FM模型

FM模型相比普通的线性模型,多了二阶项,是一个二阶多项式模型。

y=w_0+\sum_{i=1}^n w_ix_i + \sum_{i=1}^{n-1} \sum_{j=i+1}^{n}w_{ij}x_ix_j

从实际经验来看,线上有很多id类特征,categorical特征,这种特征是很稀疏的,对于求解w具有一定的困难。所以FM模型引入了辅助向量v
v_i = (v_{i1},v_{i2},v_{i3}......v_{ik}) 来表示上式中的w权重。


引入v向量后,我们可以推导出:
FM推导公式

所以就可以愉快地优化了~~

代码实现

fm代码实现起来比较简单

 def build_model(self):
        self.x = tf.placeholder(tf.float32, shape=[None, self.input_dim])
        self.y = tf.placeholder(tf.float32, shape=[None, 1])

        self.w0 = tf.Variable(np.zeros(1), name="w0", dtype=tf.float32)
        self.w = tf.Variable(np.zeros(self.input_dim), name="linear_weight", dtype=tf.float32)
        self.v = tf.Variable(tf.random_normal(shape=[self.input_dim, self.v_dim], mean=0, stddev=0.01), name='pair_weight', dtype=tf.float32)

        # 根据fm公式计算模型输出
        linear_items = tf.add(self.w0, tf.reduce_sum(tf.multiply(self.w, self.x), axis=1, keep_dims=True))

        x_square = tf.square(self.x)
        v_square = tf.square(self.v)
        pairwise_items = 0.5 * tf.reduce_sum(tf.square(tf.matmul(self.x, self.v)) - tf.matmul(x_square, v_square),
                                             axis=1, keep_dims=True)
        y_hat = tf.add(linear_items, pairwise_items)

        with tf.name_scope("loss"):
            self.loss = tf.reduce_mean(tf.square(self.y - y_hat))
            update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
            with tf.control_dependencies(update_ops):
                optimizer = tf.train.AdamOptimizer(learning_rate=self.learning_rate)
            self.train_step = optimizer.minimize(self.loss)
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 224,289评论 6 522
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 95,968评论 3 402
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 171,336评论 0 366
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 60,718评论 1 300
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 69,734评论 6 399
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 53,240评论 1 314
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 41,631评论 3 428
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 40,599评论 0 279
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 47,139评论 1 324
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 39,166评论 3 345
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 41,286评论 1 354
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 36,917评论 5 350
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 42,604评论 3 336
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 33,075评论 0 25
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 34,205评论 1 275
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 49,814评论 3 381
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 46,351评论 2 365

推荐阅读更多精彩内容