配置深度学习主机与环境(TensorFlow+1080Ti):(四)基于Anaconda的TensorFlow安装

配置深度学习主机与环境(TensorFlow+1080Ti):
(一)硬件选购与主机组装
(二)Win10&Ubuntu双系统与显卡驱动安装
(三)CUDA与CUDNN安装
(四)基于Anaconda的TensorFlow安装


0. 概念介绍

Anaconda

Anaconda是一个用于科学计算的Python发行版,支持 Linux, Mac, Windows系统,提供了包管理与环境管理的功能,可以很方便地解决多版本python并存、切换以及各种第三方包安装问题。Anaconda利用工具/命令conda来进行package和environment的管理,并且已经包含了Python和相关的配套工具。
这里先解释下conda、anaconda这些概念的差别。conda可以理解为一个工具,也是一个可执行命令,其核心功能是包管理环境管理。包管理与pip的使用类似,环境管理则允许用户方便地安装不同版本的python并可以快速切换。Anaconda则是一个打包的集合,里面预装好了conda、某个版本的python、众多packages、科学计算工具等等,所以也称为Python的一种发行版。其实还有Miniconda,顾名思义,它只包含最基本的内容——python与conda,以及相关的必须依赖项,对于空间要求严格的用户,Miniconda是一种选择。

来源:PeterYuan-Anaconda使用总结

TensorFlow

TensorFlow™ 是一个采用数据流图(data flow graphs),用于数值计算的开源软件库。节点(Nodes)在图中表示数学操作,图中的线(edges)则表示在节点间相互联系的多维数据数组,即张量(tensor)。它灵活的架构让你可以在多种平台上展开计算,例如台式计算机中的一个或多个CPU(或GPU),服务器,移动设备等等。TensorFlow 最初由Google大脑小组(隶属于Google机器智能研究机构)的研究员和工程师们开发出来,用于机器学习和深度神经网络方面的研究,但这个系统的通用性使其也可广泛用于其他计算领域。

更多介绍可以参考:TensorFlow 中文社区

2. 安装Anaconda

  1. 下载Anaconda
    选择Anaconda官方网站下载,考虑到Python2.7不可或缺的地位,选择Python2.7 64-BIT版本下载,当然Python3.6 也可以。
    Anaconda 下载

    如果觉得Anaconda官方网站下载速度过慢,可以选择:
Do you wish the installer to prepend the Anaconda2 install location to PATH in your /home/dexter/.bashrc ? [yes|no]

请选择 yes 则会自动配置环境变量,无需自己手动添加。

配置环境

安装完毕后可以打开终端,输入conda --version查询conda版本。

3. 安装TensorFlow

TensorFlow的安装方式有很多,在此选择使用基于Anaconda的安装方式。实际上到这一步后安装TF已经非常简单,官方文档也有着简洁明了的指导,建议自习阅读,安装出现问题,一般都可以查阅官方文档

  1. 使用conda指令创建虚拟环境
    打开终端,输入conda create --nane tensorflow python=2.7,其中“tensorflow”是新创建的环境(容器)名称,你也可以选择其他命名。
    创建新环境
    关于如何激活、关闭环境,安装过程中也有提示:
# To activate this environment, use:
# > source activate tensorflow
# 
# To deactivate this environment, use:
# > source deactivate tensorflow
  1. 在新创建的虚拟环境TensorFlow(容器)中安装TensorFlow
    官方安装流程
    打开终端,输入 source activate tensorflow 激活新创建的容器。
    tensorflow安装
    输入:
 (tensorflow)$ pip install --ignore-installed --upgrade tfBinaryURL

末尾的tfBinaryURL请用如下链接替换:

https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow_gpu-1.2.1-cp27-none-linux_x86_64.whl

以上链接为TensorFlow(GPU)1.2.1版本。如果只需要安装CPU版本(无需CUDA&cuDNN),请用如下链接替换tfBinaryURL

https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-1.2.1-cp27-none-linux_x86_64.whl
  1. 确认安装情况


    Validate your installation

Invoke python from your shell as follows:
$ **python**
Enter the following short program inside the python interactive shell:

# Python
import tensorflow as tf
hello = tf.constant('Hello, TensorFlow!')
sess = tf.Session()
print(sess.run(hello))

If the system outputs the following, then you are ready to begin writing TensorFlow programs:
Hello, TensorFlow!
If you are new to TensorFlow, see Getting Started with TensorFlow.
If the system outputs an error message instead of a greeting, see Common installation problems.

Hello, Dexter~

至此,基于Anaconda的TensorFlow安装成功。

4. 启动IDE

因为是在Anaconda中安装的TensorFlow,推荐使用Anaconda自带的IDE:Spyder。启动方法:
打开终端,激活tensorflow环境

source activate tensorflow

输入:spyder 指令,稍等即可打开spyder3(环境还是python2.7)。

spyder3
再右下角的console中输入:

import tensorflow as tf

如果系统没有报错,则可以正常使用IDE,可以运行上图中的MNIST程序验证。如果显示没有tensorflow这个module或者文件不存在,则可能没能统一编译环境。解决方法如下:

  • 关闭spyder,在已经激活的tensorflow环境中输入:
conda install spyder

重新安装spyder,可能这个过程比较慢,涉及的包特别多,下载速度堪忧。安装好之后再次在tensorflow环境中输入spyder打开IDE,再尝试:

import tensorflow as tf

如果没问题即可,如果依旧显示无法找到tf模块,可参照以下方法。

  • 打开一个新终端,输入:
# 删除tensorflow环境
conda remove -n python27 tensorflow

然后重新安装tensorflow,在版本选择时,选择1.2.0版本。即,将tfBinaryURL中的1.2.1替换为1.2.0

https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow_gpu-1.2.0-cp27-none-linux_x86_64.whl

后面步骤照旧,如果无法import,再次重新安装spyder,即可。

5. 参考资料

  1. PeterYuan:Anaconda使用总结
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,271评论 5 476
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,275评论 2 380
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,151评论 0 336
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,550评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,553评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,559评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,924评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,580评论 0 257
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,826评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,578评论 2 320
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,661评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,363评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,940评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,926评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,156评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,872评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,391评论 2 342

推荐阅读更多精彩内容