深度学习-前向传播与反向传播2

不同损失函数与激活函数所带来的训练的不同

C=\frac{1}{2}(y'-y)^2,\sigma=sigmoid() C=-ylogy'-(1-y)log(1-y'),\sigma=sigmoid() C=-\sum y_ilogy_i'\sigma^l=sigmoid(),\sigma^L=softmax()
导数 C'=y'-y,\sigma'=\sigma(1-\sigma) C'=\frac{1-y}{1-y'}-\frac{y}{y'},\sigma'=\sigma(1-\sigma) C'(a^L_i)=-\frac{1}{a^L_i} , softmax'(z^L_i)=a^L_i(1-a^L_i)
\delta^L=C'\odot\sigma' (a^L-y)\odot\sigma(1-\sigma) a^L-y (0,0,...,a^L_i-1,..,0)^T
\frac{\partial C}{\partial W^L} \delta^L(a^{L-1})^T \delta^L(a^{L-1})^T \delta^L(a^{L-1})^T
\delta^l (W^{l+1})^T\delta^{l+1}\odot\sigma'(z^l) (W^{l+1})^T\delta^{l+1}\odot\sigma'(z^l) (W^{l+1})^T\delta^{l+1}\odot\sigma'(z^l)
\frac{\partial C}{\partial W^l} \delta^l(a^{l-1})^T \delta^l(a^{l-1})^T \delta^l(a^{l-1})^T
\frac{\partial C}{\partial b^l} \delta^l \delta^l \delta^l

对比前两列,最大的不同在\delta^L,使用交叉熵的模型少乘了一个\sigma',而\sigma'往往是很小的(只在0附近比较大),所以第二列会比第一列收敛快。

但关键是在\delta^l,大家都一样,但是随着l的不断减小,累乘的\sigma'越来越多,最后导致有的\delta^l越来越小趋近于0造成梯度消失(因为0<sigmoid'\le0.25)。这样导致底层网络权重得不到有效训练。同样,有的激活函数导数可能会很容易>1,这样就会造成梯度爆炸。总结起来就是,由于反向传播算法的固有缺陷,在网络层数过多时,会出现梯度学习问题,为了解决有如下常用方法,具体见上链接。

  • 针对梯度爆炸,可以人为设定最大的梯度值,超过了就等于最大梯度值。这种做法叫梯度剪切。另外也可以对权重做正则化,来确保每次权重都不会太大。
  • 针对梯度消失,如果激活函数的导数=1,那么就不会出现消失或爆炸,于是提出了ReLu激活函数
    另外还有残差网络,batchnorm等技术

根本上就是针对BP的\delta^l的组成,要么从激活函数导数入手,要么从权重W入手,要么从连乘的传递结构入手等等。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 220,367评论 6 512
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,959评论 3 396
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 166,750评论 0 357
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 59,226评论 1 295
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 68,252评论 6 397
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,975评论 1 308
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,592评论 3 420
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,497评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 46,027评论 1 319
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 38,147评论 3 340
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,274评论 1 352
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,953评论 5 347
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,623评论 3 331
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,143评论 0 23
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,260评论 1 272
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,607评论 3 375
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,271评论 2 358

推荐阅读更多精彩内容