1. java线程是如何创建的
先看下Thread.java中的start方法
public synchronized void start() {
..................................
nativeCreate(this, stackSize, daemon);
..................................
}
nativeCreate显然,是通过jni调用通过c++实现的
在java_lang_Thread.cc中可以看到nativeCreate函数的注册,对应的native函数如下
<pre>static void Thread_nativeCreate(JNIEnv* env, jclass, jobject java_thread, jlong stack_size,
jboolean daemon) {
// There are sections in the zygote that forbid thread creation.
Runtime* runtime = Runtime::Current();
if (runtime->IsZygote() && runtime->IsZygoteNoThreadSection()) {
jclass internal_error = env->FindClass("java/lang/InternalError");
CHECK(internal_error != nullptr);
env->ThrowNew(internal_error, "Cannot create threads in zygote");
return;
}
Thread::CreateNativeThread(env, java_thread, stack_size, daemon == JNI_TRUE);
</pre>
对应的调用了Thread中的CreateNativeThread函数
<pre>void Thread::CreateNativeThread(JNIEnv* env, jobject java_peer, size_t stack_size, bool is_daemon) {
..................................................
pthread_create_result = pthread_create(&new_pthread,
&attr,
Thread::CreateCallback,
child_thread);
.....................................................
</pre>
看到最后,其实java线程对应的就是一个c++创建的线程,在这个c++的线程中,会不断的取出java的指令,然后解析执行
2. Synchronized的实现原理
首先尝试下对synchronized的代码进行反编译
public class SynchronizedTest {
public synchronized void doSth(){
System.out.println("Hello World");
}
public void doSth1(){
synchronized (SynchronizedTest.class){
System.out.println("Hello World");
}
}
执行反编译后
public synchronized void doSth();
descriptor: ()V
flags: ACC_PUBLIC, ACC_SYNCHRONIZED
Code:
stack=2, locals=1, args_size=1
0: getstatic #2 // Field java/lang/System.out:Ljava/io/PrintStream;
3: ldc #3 // String Hello World
5: invokevirtual #4 // Method java/io/PrintStream.println:(Ljava/lang/String;)V
8: return
public void doSth1();
descriptor: ()V
flags: ACC_PUBLIC
Code:
stack=2, locals=3, args_size=1
0: ldc #5 // class com/hollis/SynchronizedTest
2: dup
3: astore_1
4: monitorenter
5: getstatic #2 // Field java/lang/System.out:Ljava/io/PrintStream;
8: ldc #3 // String Hello World
10: invokevirtual #4 // Method java/io/PrintStream.println:(Ljava/lang/String;)V
13: aload_1
14: monitorexit
15: goto 23
18: astore_2
19: aload_1
20: monitorexit
21: aload_2
22: athrow
23: return
对于同步方法,是使用ACC_SYNCHRONIZED进行实现的,对于同步的代码块是使用monitorenter和monitorexit进行实现的,ACC_SYNCHRONIZED其实也是调用了moniterenter和monitorexit
问题:
为什么有两个monitorexit,程序在执行中可能会发生crash,第二个monitorexit是在发生异常时候执行的,防止发生死锁
1. java对象在内存中的模型
无论是对方法还是对代码块家synchronized其实都是对一个对象进行了加锁,如果要了解具体的实现,需要先看一下java对象在内存中的模型
Java对象保存在堆内存中。在内存中,一个Java对象包含三部分:对象头、实例数据和对齐填充。其中对象头是一个很关键的部分,因为对象头中包含锁状态标志、线程持有的锁等标志。
HotSpot是基于c++实现,而c++是一门面向对象的语言,本身是具备面向对象基本特征的,所以Java中的对象表示,最简单的做法是为每个Java类生成一个c++类与之对应。但HotSpot JVM并没有这么做,而是设计了一个OOP-Klass Model。OOP(Ordinary Object Pointer)指的是普通对象指针,而Klass用来描述对象实例的具体类型。
简而言之oop指的是对象,kclass指的是class
1. oop体系
//定义了oops共同基类
typedef class oopDesc* oop;
//表示一个Java类型实例
typedef class instanceOopDesc* instanceOop;
//表示一个Java方法
typedef class methodOopDesc* methodOop;
//表示一个Java方法中的不变信息
typedef class constMethodOopDesc* constMethodOop;
//记录性能信息的数据结构
typedef class methodDataOopDesc* methodDataOop;
//定义了数组OOPS的抽象基类
typedef class arrayOopDesc* arrayOop;
//表示持有一个OOPS数组
typedef class objArrayOopDesc* objArrayOop;
//表示容纳基本类型的数组
typedef class typeArrayOopDesc* typeArrayOop;
//表示在Class文件中描述的常量池
typedef class constantPoolOopDesc* constantPoolOop;
//常量池告诉缓存
typedef class constantPoolCacheOopDesc* constantPoolCacheOop;
//描述一个与Java类对等的C++类
typedef class klassOopDesc* klassOop;
//表示对象头
typedef class markOopDesc* markOop;
上面列出的是整个Oops模块的组成结构,其中包含多个子模块。每一个子模块对应一个类型,每一个类型的OOP都代表一个在JVM内部使用的特定对象的类型。
oopDesc有多个子类,oopDesc是其父类,对应的继承关系如下:
其中需要关注下oopDesc,这个跟synchronized的加锁有关
class oopDesc {
friend class VMStructs;
private:
volatile markOop _mark;
union _metadata {
wideKlassOop _klass;
narrowOop _compressed_klass;
} _metadata;
private:
// field addresses in oop
void* field_base(int offset) const;
jbyte* byte_field_addr(int offset) const;
jchar* char_field_addr(int offset) const;
jboolean* bool_field_addr(int offset) const;
jint* int_field_addr(int offset) const;
jshort* short_field_addr(int offset) const;
jlong* long_field_addr(int offset) const;
jfloat* float_field_addr(int offset) const;
jdouble* double_field_addr(int offset) const;
address* address_field_addr(int offset) const;
}
重点关注下volatile markOop _mark,为什么要使用volatile呢,很明显这个跟加锁(synchronized)有关系
2. kclass体系
//klassOop的一部分,用来描述语言层的类型
class Klass;
//在虚拟机层面描述一个Java类
class instanceKlass;
//专有instantKlass,表示java.lang.Class的Klass
class instanceMirrorKlass;
//专有instantKlass,表示java.lang.ref.Reference的子类的Klass
class instanceRefKlass;
//表示methodOop的Klass
class methodKlass;
//表示constMethodOop的Klass
class constMethodKlass;
//表示methodDataOop的Klass
class methodDataKlass;
//最为klass链的端点,klassKlass的Klass就是它自身
class klassKlass;
//表示instanceKlass的Klass
class instanceKlassKlass;
//表示arrayKlass的Klass
class arrayKlassKlass;
//表示objArrayKlass的Klass
class objArrayKlassKlass;
//表示typeArrayKlass的Klass
class typeArrayKlassKlass;
//表示array类型的抽象基类
class arrayKlass;
//表示objArrayOop的Klass
class objArrayKlass;
//表示typeArrayOop的Klass
class typeArrayKlass;
//表示constantPoolOop的Klass
class constantPoolKlass;
//表示constantPoolCacheOop的Klass
class constantPoolCacheKlass;
Kclass是所有class的父类
重新回到oopDesc中,里面有一个metadata的字段,如何将java对象和具体的class类型对应起来呢,就在这个metadata中
union _metadata {
wideKlassOop _klass;
narrowOop _compressed_klass;
} _metadata;
metadata中有_kclass和_compressed_kclass两个指针,他们都指向instanceKClass,那么instanceKClass是什么呢?看下具体的数据结构如下:
//类拥有的方法列表
objArrayOop _methods;
//描述方法顺序
typeArrayOop _method_ordering;
//实现的接口
objArrayOop _local_interfaces;
//继承的接口
objArrayOop _transitive_interfaces;
//域
typeArrayOop _fields;
//常量
constantPoolOop _constants;
//类加载器
oop _class_loader;
//protected域
oop _protection_domain;
很显然,instanceKClass是描述类的信息,也就是说你这个类中有哪些函数,继承关系,已经常量等等。
oop和kclass的模型可以用下图描述
-
mark和加锁
synchronized的加锁和_mark是密切相关的,_mark也叫做mark word
在32位的jvm上,结构如下
这个_mark主要记录了锁的信息,还有gc的相关信息
无论是基于synchronize的方法块或者是代码块,其实synchronize都指定了一个对象,而实际加锁的对象是这个对象对应的oop中mark word(_mark)
举个例子说明一下
Object object = new Object();
synchronized(object){
System.out.println("test");
}
Object创建后,会在内存中生成一个oopDesc,在oopDesc中对应一个_mark,也就是说对这个_mark作为参照执行对应的加锁工作
-
synchronized中的锁优化
偏向锁是JDK6中的重要引进,因为HotSpot作者经过研究实践发现,在大多数情况下,锁不仅不存在多线程竞争,而且总是由同一线程多次获得,为了让线程获得锁的代价更低,引进了偏向锁。
偏向锁是在单线程执行代码块时使用的机制,如果在多线程并发的环境下(即线程A尚未执行完同步代码块,线程B发起了申请锁的申请),则一定会转化为轻量级锁或者重量级锁。
那么偏向锁是如何来减少不必要的CAS操作呢?
现在几乎所有的锁都是可重入的,即已经获得锁的线程可以多次锁住/解锁监视对象,按照之前的HotSpot设计,每次加锁/解锁都会涉及到一些CAS操作(比如对等待队列的CAS操作),CAS操作会延迟本地调用,因此偏向锁的想法是 一旦线程第一次获得了监视对象,之后让监视对象“偏向”这个线程,之后的多次调用则可以避免CAS操作,说白了就是置个变量,如果发现为true则无需再走各种加锁/解锁流程。
具体对应到实现是在_mark 中存储一个线程的id,每当有线程要执行加锁,先查看下这个线程id是否等于当前线程的id,如果相等,就不需要执行CAS操作,而是直接往下执行代码
-
CAS实现
CAS全称compare-and-swap,其作用是让CPU比较后原子地更新某个位置的值,经过调查发现,其实现方式是基于硬件平台的汇编指令,就是说CAS是靠硬件实现的,JVM只是封装了汇编调用,那些AtomicInteger类便是使用了这些封装后的接口。
-
偏向锁的具体加锁流程
当一个线程访问同步块并获取锁时,会在对象头和栈帧中的锁记录里存储锁偏向的线程ID,以后该线程进入和退出同步块时不需要花费CAS操作来争夺锁资源,只需要检查是否为偏向锁、锁标识为以及ThreadID即可,处理流程如下:
1)检测Mark Word是否为可偏向状态,即是否为偏向锁1,锁标识位为01;
2)若为可偏向状态,则测试线程ID是否为当前线程ID,如果是,则执行步骤(5),否则执行步骤(3);
3)如果测试线程ID不为当前线程ID,则通过CAS操作竞争锁,竞争成功,则将Mark Word的线程ID替换为当前线程ID,否则执行线程(4);
4)通过CAS竞争锁失败,证明当前存在多线程竞争情况,当到达全局安全点,获得偏向锁的线程被挂起,偏向锁升级为轻量级锁,然后被阻塞在安全点的线程继续往下执行同步代码块;
5)执行同步代码块;
-
轻量锁
偏向锁是针对只有一个线程,并未发生资源竞争时候使用的一种锁的机制,对应到jvm中也就是之前讲的CAS操作,其执行步骤如下
- 在线程进入同步块时,检查_mark中的锁状态标志位,如果同步对象锁状态为无锁状态(锁标志位为“01”状态,是否为偏向锁为“0”),虚拟机首先将在当前线程的栈帧中建立一个名为锁记录(Lock Record)的空间,用于存储锁对象目前的Mark Word的拷贝,官方称之为 Displaced Mark Word。
- 拷贝对象头中的Mark Word复制到锁记录(Lock Record)中;
- 拷贝成功后,虚拟机将使用CAS操作尝试将对象Mark Word中的Lock Word更新为指向当前线程Lock Record的指针,并将Lock record里的owner指针指向object mark word。如果更新成功,则执行步骤(4),否则执行步骤(5);
- 如果这个更新动作成功了,那么当前线程就拥有了该对象的锁,并且对象Mark Word的锁标志位设置为“00”,即表示此对象处于轻量级锁定状态,此时线程堆栈与对象头的状态如下图所示:
- 如果这个更新操作失败了,虚拟机首先会检查对象Mark Word中的Lock Word是否指向当前线程的栈帧,如果是,就说明当前线程已经拥有了这个对象的锁,那就可以直接进入同步块继续执行。否则说明多个线程竞争锁,进入自旋执行(3),若自旋结束时仍未获得锁,轻量级锁就要膨胀为重量级锁,锁标志的状态值变为“10”,Mark Word中存储的就是指向重量级锁(互斥量)的指针,当前线程以及后面等待锁的线程也要进入阻塞状态。
-
重量级锁
Synchronized在进入同步代码前,会先使用偏向锁,失败了转换成轻量锁(自旋锁),自旋一定的次数失败后就会升级为重量锁,重量锁是通过对象内部的一个叫做 监视器锁(Monitor)来实现的。但是监视器锁本质又是依赖于底层的操作系统的Mutex Lock来实现的。而操作系统实现线程之间的切换这就需要从用户态转换到核心态,这个成本非常高,状态之间的转换需要相对比较长的时间,这就是为什么Synchronized效率低的原因。因此,这种依赖于操作系统Mutex Lock所实现的锁我们称之为 “重量级锁”。
-
Monitor具体代码实现
前面提到的monitorenter,monitorexit其实是基于Monitor实现的,具体对应的类是ObjectMonitor
ObjectMonitor() {
_header = NULL;
_count = 0;
_waiters = 0,
_recursions = 0;
_object = NULL;
_owner = NULL; //正在执行的线程id
_WaitSet = NULL;
_WaitSetLock = 0 ;
_Responsible = NULL ;
_succ = NULL ;
_cxq = NULL ;
FreeNext = NULL ;
_EntryList = NULL ;
_SpinFreq = 0 ;
_SpinClock = 0 ;
OwnerIsThread = 0 ;
}
还提供了enter方法,其实就是对应monitorenter这个关键字
void ATTR ObjectMonitor::enter(TRAPS) {
Thread * const Self = THREAD ;
void * cur ;
//通过CAS尝试把monitor的`_owner`字段设置为当前线程
cur = Atomic::cmpxchg_ptr (Self, &_owner, NULL) ;
//获取锁失败
if (cur == NULL) { assert (_recursions == 0 , "invariant") ;
assert (_owner == Self, "invariant") ;
// CONSIDER: set or assert OwnerIsThread == 1
return ;
}
// 如果旧值和当前线程一样,说明当前线程已经持有锁,此次为重入,_recursions自增,并获得锁。
if (cur == Self) {
// TODO-FIXME: check for integer overflow! BUGID 6557169.
_recursions ++ ;
return ;
}
// 如果当前线程是第一次进入该monitor,设置_recursions为1,_owner为当前线程
if (Self->is_lock_owned ((address)cur)) {
assert (_recursions == 0, "internal state error");
_recursions = 1 ;
// Commute owner from a thread-specific on-stack BasicLockObject address to
// a full-fledged "Thread *".
_owner = Self ;
OwnerIsThread = 1 ;
return ;
}
// 省略部分代码。
// 通过自旋执行ObjectMonitor::EnterI方法等待锁的释放
for (;;) {
jt->set_suspend_equivalent();
// cleared by handle_special_suspend_equivalent_condition()
// or java_suspend_self()
EnterI (THREAD) ;
if (!ExitSuspendEquivalent(jt)) break ;
//
// We have acquired the contended monitor, but while we were
// waiting another thread suspended us. We don't want to enter
// the monitor while suspended because that would surprise the
// thread that suspended us.
//
_recursions = 0 ;
_succ = NULL ;
exit (Self) ;
jt->java_suspend_self()
从代码中可以看到moniterenter也是先执行偏向锁,如果偏向锁不满足,升级成自旋锁,自旋超过一定次数就会升级成重量锁