最近用Scrapy做爬虫的时候碰到数据分布在多个页面,要发去多次请求才能收集到足够的信息,例如列表只有简单的几个信息,更多的信息在内页。查看官方文档没找到相关的案例或说明,这个有点坑。
最后自己查了写资料,研究后一下,终于整出来了。
yield scrapy.Request(item['url'], meta={'item': item}, callback=self.detail_parse)
Scrapy 用scrapy.Request发起请求可以带上 meta={'item': item} 把之前已收集到的信息传递到新请求里,在新请求里用 item = response.meta('item') 接受过来,在 item 就可以继续添加新的收集的信息了。
多少级的请求的数据都可以收集。
代码演示如下:
spider.py
-- coding: utf-8 --
import scrapy
from Tencent.items import TencentItem
class TencentSpider(scrapy.Spider):
# 爬虫名称
name = 'tencent'
# 允许爬取的域名
allowed_domains = ['www.xxx.com']
# 爬虫基础地址 用于爬虫域名的拼接
base_url = 'https://www.xxx.com/'
# 爬虫入口爬取地址
start_urls = ['https://www.xxx.com/position.php']
# 爬虫爬取页数控制初始值
count = 1
# 爬虫爬取页数 10为只爬取一页
page_end = 1
def parse(self, response):
nodeList = response.xpath("//table[@class='tablelist']/tr[@class='odd'] | //table[@class='tablelist']/tr[@class='even']")
for node in nodeList:
item = TencentItem()
item['title'] = node.xpath("./td[1]/a/text()").extract()[0]
if len(node.xpath("./td[2]/text()")):
item['position'] = node.xpath("./td[2]/text()").extract()[0]
else:
item['position'] = ''
item['num'] = node.xpath("./td[3]/text()").extract()[0]
item['address'] = node.xpath("./td[4]/text()").extract()[0]
item['time'] = node.xpath("./td[5]/text()").extract()[0]
item['url'] = self.base_url + node.xpath("./td[1]/a/@href").extract()[0]
# 根据内页地址爬取
yield scrapy.Request(item['url'], meta={'item': item}, callback=self.detail_parse)
# 有下级页面爬取 注释掉数据返回
# yield item
# 循环爬取翻页
nextPage = response.xpath("//a[@id='next']/@href").extract()[0]
# 爬取页数控制及末页控制
if self.count < self.page_end and nextPage != 'javascript:;':
if nextPage is not None:
# 爬取页数控制值自增
self.count = self.count + 1
# 翻页请求
yield scrapy.Request(self.base_url + nextPage, callback=self.parse)
else:
# 爬虫结束
return None
def detail_parse(self, response):
# 接收上级已爬取的数据
item = response.meta['item']
#一级内页数据提取
item['zhize'] = response.xpath("//*[@id='position_detail']/div/table/tr[3]/td/ul[1]").xpath('string(.)').extract()[0]
item['yaoqiu'] = response.xpath("//*[@id='position_detail']/div/table/tr[4]/td/ul[1]").xpath('string(.)').extract()[0]
# 二级内页地址爬取
yield scrapy.Request(item['url'] + "&123", meta={'item': item}, callback=self.detail_parse2)
# 有下级页面爬取 注释掉数据返回
# return item
def detail_parse2(self, response):
# 接收上级已爬取的数据
item = response.meta['item']
# 二级内页数据提取
item['test'] = "111111111111111111"
# 最终返回数据给爬虫引擎
return item
item 结构化数据
-- coding: utf-8 --
Define here the models for your scraped items
See documentation in:
https://doc.scrapy.org/en/latest/topics/items.html
import scrapy
class TencentItem(scrapy.Item):
# define the fields for your item here like:
# 职位名称
title = scrapy.Field()
# 职位类别
position = scrapy.Field()
# 招聘人数
num = scrapy.Field()
# 工作地点
address = scrapy.Field()
# 发布时间
time = scrapy.Field()
# 详情链接
url = scrapy.Field()
# 工作职责
zhize = scrapy.Field()
# 工作要求
yaoqiu = scrapy.Field()
# 测试
test = scrapy.Field()