python爬虫——词云分析最热门电影《后来的我们》

ciyun_jieguo .jpg

1 模块库使用说明
1.1 requests库
requests 是用Python语言编写,基于 urllib,采用 Apache2 Licensed 开源协议的 HTTP 库。它比 urllib 更加方便,可以节约我们大量的工作,完全满足 HTTP 测试需求。
1.2 urllib库
urllib的request模块可以非常方便地抓取URL内容,也就是发送一个GET请求到指定的页面,然后返回HTTP的响应.
1.3jieba库

结巴”中文分词:做最好的 Python 中文分词组件

1.4 BeautifulSoup库
Beautiful Soup是用Python写的一个HTML/XML的解析器,它可以很好的处理不规范标记并生成剖析树(parse tree)。 它提供简单又常用的导航navigating,搜索以及修改剖析树的操作。
1.5pandas库

pandas是python的一个非常强大的数据分析库,常用于数据分析。
1.6 re库
正则表达式re(通项公式)是用来简洁表达一组字符串的表达式。优势是简洁。使用它来进行字符串处理。
1.7 wordcloud库
python中使用wordcloud包生成的词云图。我们最后要生成当前热映电影的分析词云。
2需求说明
介绍要做什么,将采用的方法、预期得到的结果是什么及其他需求说明。
爬取豆瓣网站https://movie.douban.com/cinema/nowplaying/ankang/ 城市为安康的豆瓣电影数据主要完成以下三个步骤
抓取网页数据
清理数据
用词云进行展示
使用的python版本是3.6.并使用中文分词,词云对豆瓣电影排行榜排行第一的电影进行数据分析,进行相应的词云展示。

3抓取和处理数据算法


image

1)安装request模块


image

1.1)安装需要用到的beautifulsoup模块


image

2)查看要爬取网站的结构

image

3)初步代码实现


image

3.1)初步爬取到当前的院线上映信息


image

4.1)抓取到热映电影的第一个热评信息代码


image

4.2)成功显示热评信息


image

5.1)进行数据清洗上一步中格式错乱的代码


image

5.2)数据清洗后的《后来的我们》评论信息


image

5.3)再次进行数据清洗去除掉标点符号代码


image

5.4)去除掉标点符号后的数据


image

6.1)安装pandas模块 ,用此方法依次安装wordcloud 库等。

def main():
    # 循环获取第一个电影的前10页评论
    commentList = []
    NowPlayingMovie_list = getNowPlayingMovie_list()
    for i in range(10):
        num = i + 1
        commentList_temp = getCommentsById(NowPlayingMovie_list[0]['id'], num)
        commentList.append(commentList_temp)

使用for语句循环遍历获取排行榜第一的电影的前十页评论

完整代码:

# coding:utf-8
__author__ = 'LiuYang'

import warnings

warnings.filterwarnings("ignore")
import jieba  # 分词包
import numpy  # numpy计算包
import codecs  # codecs提供的open方法来指定打开的文件的语言编码,它会在读取的时候自动转换为内部unicode
import re
import pandas as pd
import matplotlib.pyplot as plt
from urllib import request
from bs4 import BeautifulSoup as bs


import matplotlib

matplotlib.rcParams['figure.figsize'] = (10.0, 5.0)
from wordcloud import WordCloud  # 词云包


# 分析网页函数
def getNowPlayingMovie_list():
    resp = request.urlopen('https://movie.douban.com/nowplaying/ankang/')  # 爬取安康地区的豆瓣电影信息
    html_data = resp.read().decode('utf-8')
    soup = bs(html_data, 'html.parser')
    nowplaying_movie = soup.find_all('div', id='nowplaying')
    nowplaying_movie_list = nowplaying_movie[0].find_all('li', class_='list-item')
    nowplaying_list = []
    for item in nowplaying_movie_list:
        nowplaying_dict = {}
        nowplaying_dict['id'] = item['data-subject']
        for tag_img_item in item.find_all('img'):
            nowplaying_dict['name'] = tag_img_item['alt']
            nowplaying_list.append(nowplaying_dict)
    return nowplaying_list


# 爬取评论函数
def getCommentsById(movieId, pageNum):
    eachCommentList = [];
    if pageNum > 0:
        start = (pageNum - 1) * 20
    else:
        return False
    requrl = 'https://movie.douban.com/subject/' + movieId + '/comments' + '?' + 'start=' + str(start) + '&limit=20'
    print(requrl)
    resp = request.urlopen(requrl)
    html_data = resp.read().decode('utf-8')
    soup = bs(html_data, 'html.parser')
    comment_div_lits = soup.find_all('div', class_='comment')
    for item in comment_div_lits:
        if item.find_all('p')[0].string is not None:
            eachCommentList.append(item.find_all('p')[0].string)
    return eachCommentList


def main():
    # 循环获取第一个电影的前10页评论
    commentList = []
    NowPlayingMovie_list = getNowPlayingMovie_list()
    for i in range(10):
        num = i + 1
        commentList_temp = getCommentsById(NowPlayingMovie_list[0]['id'], num)
        commentList.append(commentList_temp)

    # 将列表中的数据转换为字符串
    comments = ''
    for k in range(len(commentList)):
        comments = comments + (str(commentList[k])).strip()

    # 使用正则表达式去除标点符号
    pattern = re.compile(r'[\u4e00-\u9fa5]+')
    filterdata = re.findall(pattern, comments)
    cleaned_comments = ''.join(filterdata)

    # 使用结巴分词进行中文分词
    segment = jieba.lcut(cleaned_comments)
    words_df = pd.DataFrame({'segment': segment})

    # 去掉停用词
    stopwords = pd.read_csv("stopwords.txt", index_col=False, quoting=3, sep="\t", names=['stopword'],
                            encoding='utf-8')  # quoting=3全不引用
    words_df = words_df[~words_df.segment.isin(stopwords.stopword)]

    # 统计词频
    words_stat = words_df.groupby(by=['segment'])['segment'].agg({"计数": numpy.size})
    words_stat = words_stat.reset_index().sort_values(by=["计数"], ascending=False)

    # 用词云进行显示
    wordcloud = WordCloud(font_path="simhei.ttf", background_color="white", max_font_size=80)
    word_frequence = {x[0]: x[1] for x in words_stat.head(1000).values}

    word_frequence_list = []
    for key in word_frequence:
        temp = (key, word_frequence[key])
        word_frequence_list.append(temp)

    wordcloud = wordcloud.fit_words(dict (word_frequence_list))
    plt.imshow(wordcloud)
    plt.savefig("ciyun_jieguo .jpg")

# 主函数
main()

成功获取到结果
image

到代码路径获取词云结果图片如图:

image

词云结果图

image

4结果分析说明
选取安康地区院线电影排行信息,首先对正在上映的电影进行分析,获得最热门的电影信息,第二步对排行中最热门的电影《后来的我们》进行评论抓取,进行数据清洗,去除掉格式错误的错误信息,去除掉标点,中文的叠词,获取到出现频率最高的词汇,为了保证获取到的词云信息准确性,并且循环遍历十页评论信息,统计计数,再通过词云获取到此电影的词云信息。
由最终获得的词云分析图可知,我们顺利的爬取了安康地区的豆瓣电影信息,影院当前正在上映的电影信息,由此得到热门电影《后来的我们》此电影的特征标签,也基本上反映了这部电影的情况,观影者的感受,电影的主要角色,导演信息等一目了然。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,634评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,951评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,427评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,770评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,835评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,799评论 1 294
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,768评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,544评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,979评论 1 308
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,271评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,427评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,121评论 5 340
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,756评论 3 324
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,375评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,579评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,410评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,315评论 2 352

推荐阅读更多精彩内容

  • Python 资源大全中文版 awesome-python[https://github.com/vinta/aw...
    万色星辰阅读 9,763评论 0 256
  • GitHub 上有一个 Awesome - XXX 系列的资源整理,资源非常丰富,涉及面非常广。awesome-p...
    若与阅读 18,638评论 4 418
  • 1身是菩提树,心如明镜台,时时勤拂拭,莫使有尘埃。(神秀示法诗) 2菩提本无树,明镜亦非台,本来无一物,何处惹尘埃...
    道素阅读 1,478评论 4 58
  • 生活,就像天气一样,有时天晴,有时下暴雨,不管是狂风暴雨,终究都会过去的,风雨过后是彩虹。 在不如意的时候,别忘了...
    猫恋一夏阅读 648评论 2 1
  • 周一下午,十岁的阿杰放学了,但他不想回家,不想看到那令他伤心的情景。 想起那个场景,阿杰就不由自主地打寒颤。 爸爸...
    枯叶草迷图阅读 600评论 1 5