zookeeper单机模式搭建
Zookeeper集群及伪集群模式搭建
简介
- ZooKeeper 是一个开源的分布式协调服务,由雅虎创建,是 Google Chubby 的开源实现。ZooKeeper的目标就是封装好复杂易出错的关键服务,将简单易用的接口和性能高效、功能稳定的系统提供给用户,提供配置管理、分布式协同以及命名的中心化服务。
- 这些功能都是分布式系统中非常底层且必不可少的基本功能,但是如果自己实现这些功能而且要达到高吞吐、低延迟同时还要保持一致性和可用性,实际上非常困难。因此zookeeper提供了这些功能,开发者可以在zookeeper之上构建自己的各种分布式系统,为分布式应用提供一致性服务,提供的功能包括:配置维护、域名服务、分布式同步、组服务等。
- 分布式应用程序可以基于 ZooKeeper 实现诸如数据发布/订阅、负载均衡、命名服务、分布式协调/通知、集群管理、Master 选举、分布式锁和分布式队列等功能。
- ZooKeeper代码版本中,提供了分布式独享锁、选举、队列的接口,代码在zookeeper-xxx\src\recipes。 ZooKeeper包含一个简单的原语集,提供Java和C的接口。其中分布锁和队列有Java和C两个版本,选举只有Java版本。
- Zookeeper通过复制来实现高可用性,只要集合体中半数以上的机器处于可用状态,它就能够保证服务继续。为什么一定要超过半数呢?这跟Zookeeper的复制策略有关:zookeeper确保对znode 树的每一个修改都会被复制到集合体中超过半数的机器上。
Zookeeper设计目的
- 最终一致性:client不论连接到哪个Server,展示给它都是同一个视图,这是zookeeper最重要的性能。
- 可靠性:具有简单、健壮、良好的性能,如果消息被到一台服务器接受,那么它将被所有的服务器接受。
- 实时性:Zookeeper保证客户端将在一个时间间隔范围内获得服务器的更新信息,或者服务器失效的信息。但由于网络延时等原因,Zookeeper不能保证两个客户端能同时得到刚更新的数据,如果需要最新数据,应该在读数据之前调用sync()接口。
- 等待无关(wait-free):慢的或者失效的client不得干预快速的client的请求,使得每个client都能有效的等待。
- 原子性:更新只能成功或者失败,没有中间状态。
- 顺序性:包括全局有序和偏序两种:全局有序是指如果在一台服务器上消息a在消息b前发布,则在所有Server上消息a都将在消息b前被发布;偏序是指如果一个消息b在消息a后被同一个发送者发布,a必将排在b前面。
Zookeeper拥有的特性
ZooKeeper具备的几个特性决定了它能够用在大型分布式的系统当中:
- 顺序一致性
从同一个客户端发起的事务请求,最终将会严格按照其发起顺序被应用到zookeeper中。所有的更新都是全局有序的,每个更新都有一个唯一的时间戳,这个时间戳称为zxid(Zookeeper Transaction Id)。而读请求只会相对于更新有序,也就是读请求的返回结果中会带有这个zookeeper最新的zxid。 - 原子性
所有事物请求的处理结果在整个集群中所有机器上的应用情况是一致的,即,要么整个集群中所有机器都成功应用了某一事务,要么都没有应用,一定不会出现集群中部分机器应用了该事务,另外一部分没有应用的情况。 - 单一视图
无论客户端连接的是哪个zookeeper服务器,其看到的服务端数据模型都是一致的。 - 可靠性
一旦服务端成功的应用了一个事务,并完成对客户端的响应,那么该事务所引起的服务端状态变更将会一直保留下来,除非有另一个事务又对其进行了改变。 - 实时性
zookeeper并不是一种强一致性,只能保证顺序一致性和最终一致性,只能称为达到了伪实时性。
ZooKeeper提供了什么
1. 文件系统
每个子目录项如 NameService 都被称作为ZNode ,和文件系统一样,我们能够自由的增加、删除ZNode ,在一个ZNode 下增加、删除子ZNode ,唯一的不同在于ZNode 是可以存储数据的。 这里的 ZNode 可以理解成既是Unix里的文件,又是Unix里的目录。因为每个 ZNode 不仅本身可以写数据(相当于Unix里的文件),还可以有下一级文件或目录(相当于Unix里的目录)。
有四种类型的znode:
- PERSISTENT-持久化目录节点
客户端与zookeeper断开连接后,该节点依旧存在。一旦这个 ZNode 被创建了,除非主动进行 ZNode 的移除操作,否则这个 ZNode 将一直保存在 ZooKeeper 上。 - PERSISTENT_SEQUENTIAL-持久化顺序编号目录节点
客户端与zookeeper断开连接后,该节点依旧存在,只是Zookeeper给该节点名称进行顺序编号 - EPHEMERAL-临时目录节点
客户端与zookeeper断开连接后,该节点被删除 -
EPHEMERAL_SEQUENTIAL-临时顺序编号目录节点
客户端与zookeeper断开连接后,该节点被删除,只是Zookeeper给该节点名称进行顺序编号
2. 通知机制
客户端注册监听它关心的目录节点,当目录节点发生变化(数据改变、被删除、子目录节点增加删除)时,zookeeper会通知客户端。
Zookeeper可以做什么
1. Zookeeper命名服务
命名服务也是分布式系统中比较常见的一类场景。在分布式系统中,通过使用命名服务,客户端应用能够根据指定名字来获取资源或服务的地址,提供者等信息。被命名的实体通常可以是集群中的机器,提供的服务,远程对象等等——这些我们都可以统称他们为名字(Name)。
其中较为常见的就是一些分布式服务框架(如RPC、RMI)中的服务地址列表。通过在ZooKeepr里创建顺序节点,能够很容易创建一个全局唯一的路径,这个路径就可以作为一个名字。
ZooKeeper 的命名服务即生成全局唯一的ID。
2. Zookeeper的配置管理
程序总是需要配置的,如果程序分散部署在多台机器上,要逐个改变配置就变得困难。现在把这些配置全部放到zookeeper上去,保存在 Zookeeper 的某个目录节点中,然后所有相关应用程序对这个目录节点进行监听,一旦配置信息发生变化,每个应用程序就会收到 Zookeeper 的通知,然后从 Zookeeper 获取新的配置信息应用到系统中就好。
这些配置信息通常具备以下3个特性:
- 数据量通常比较小。
- 数据内容在运行时动态变化。
- 集群中各机器共享,配置一致。
对于这样的配置信息就可以发布到 ZooKeeper上,让客户端(集群的机器)去订阅该消息。
发布/订阅系统一般有两种设计模式,分别是推(Push)和拉(Pull)模式。
推:服务端主动将数据更新发送给所有订阅的客户端。
拉:客户端主动发起请求来获取最新数据,通常客户端都采用定时轮询拉取的方式。
ZooKeeper 采用的是推拉相结合的方式。如下:
客户端想服务端注册自己需要关注的节点,一旦该节点的数据发生变更,那么服务端就会向相应的客户端发送Watcher事件通知,客户端接收到这个消息通知后,需要主动到服务端获取最新的数据(推拉结合)。
3. Zookeeper集群管理
所谓集群管理无在乎两点:是否有机器退出和加入、选举master。
对于第一点,所有机器约定在父目录GroupMembers下创建临时目录节点,然后监听父目录节点的子节点变化消息。一旦有机器挂掉,该机器与 zookeeper的连接断开,其所创建的临时目录节点被删除,所有其他机器都收到通知:某个兄弟目录被删除,于是,所有人都知道:它上船了。
新机器加入也是类似,所有机器收到通知:新兄弟目录加入,highcount又有了,对于第二点,我们稍微改变一下,所有机器创建临时顺序编号目录节点,每次选取编号最小的机器作为master就好。Master 选举可以说是 ZooKeeper 最典型的应用场景了。比如 HDFS 中 Active NameNode 的选举、YARN 中 Active ResourceManager 的选举和 HBase 中 Active HMaster 的选举等。针对 Master 选举的需求,通常情况下,我们可以选择常见的关系型数据库中的主键特性来实现:希望成为 Master 的机器都向数据库中插入一条相同主键ID的记录,数据库会帮我们进行主键冲突检查,也就是说,只有一台机器能插入成功——那么,我们就认为向数据库中成功插入数据的客户端机器成为Master。依靠关系型数据库的主键特性确实能够很好地保证在集群中选举出唯一的一个Master。但是,如果当前选举出的 Master 挂了,那么该如何处理?谁来告诉我 Master 挂了呢?显然,关系型数据库无法通知我们这个事件,但是,ZooKeeper 可以做到。
利用 ZooKeepr 的强一致性,能够很好地保证在分布式高并发情况下节点的创建一定能够保证全局唯一性,即 ZooKeeper 将会保证客户端无法创建一个已经存在的 ZNode。也就是说,如果同时有多个客户端请求创建同一个临时节点,那么最终一定只有一个客户端请求能够创建成功。利用这个特性,就能很容易地在分布式环境中进行 Master 选举了。成功创建该节点的客户端所在的机器就成为了 Master。同时,其他没有成功创建该节点的客户端,都会在该节点上注册一个子节点变更的 Watcher,用于监控当前 Master 机器是否存活,一旦发现当前的Master挂了,那么其他客户端将会重新进行 Master 选举。
4. Zookeeper分布式锁
分布式锁是控制分布式系统之间同步访问共享资源的一种方式。
有了zookeeper的一致性文件系统,锁的问题变得容易。锁服务可以分为两类,一个是保持独占,另一个是控制时序。
对于第一类,我们将zookeeper上的一个znode看作是一把锁,通过createznode的方式来实现。所有客户端都去创建 /distribute_lock 节点,最终成功创建的那个客户端也即拥有了这把锁。用完删除掉自己创建的distribute_lock 节点就释放出锁。
对于第二类, /distribute_lock 已经预先存在,所有客户端在它下面创建临时顺序编号目录节点,和选master一样,编号最小的获得锁,用完删除,依次方便。
分布式锁又分为排他锁和共享锁两种。
- 排他锁
排他锁(Exclusive Locks,简称X锁),又称为写锁或独占锁。
如果事务T1对数据对象O1加上了排他锁,那么在整个加锁期间,只允许事务T1对O1进行读取和更新操作,其他任何事务都不能在对这个数据对象进行任何类型的操作(不能再对该对象加锁),直到T1释放了排他锁。
可以看出,排他锁的核心是如何保证当前只有一个事务获得锁,并且锁被释放后,所有正在等待获取锁的事务都能够被通知到。
如何利用 ZooKeeper 实现排他锁?
- 定义锁
ZooKeeper 上的一个 ZNode 可以表示一个锁。例如 /exclusive_lock/lock节点就可以被定义为一个锁。 - 获得锁
如上所说,把ZooKeeper上的一个ZNode看作是一个锁,获得锁就通过创建 ZNode 的方式来实现。所有客户端都去 /exclusive_lock节点下创建临时子节点 /exclusive_lock/lock。ZooKeeper 会保证在所有客户端中,最终只有一个客户端能够创建成功,那么就可以认为该客户端获得了锁。同时,所有没有获取到锁的客户端就需要到/exclusive_lock节点上注册一个子节点变更的Watcher监听,以便实时监听到lock节点的变更情况。 - 释放锁
因为 /exclusive_lock/lock 是一个临时节点,因此在以下两种情况下,都有可能释放锁。
当前获得锁的客户端机器发生宕机或重启,那么该临时节点就会被删除,释放锁。
正常执行完业务逻辑后,客户端就会主动将自己创建的临时节点删除,释放锁。
无论在什么情况下移除了lock节点,ZooKeeper 都会通知所有在 /exclusive_lock 节点上注册了节点变更 Watcher 监听的客户端。这些客户端在接收到通知后,再次重新发起分布式锁获取,即重复『获取锁』过程。
- 共享锁
共享锁(Shared Locks,简称S锁),又称为读锁。如果事务T1对数据对象O1加上了共享锁,那么T1只能对O1进行读操作,其他事务也能同时对O1加共享锁(不能是排他锁),直到O1上的所有共享锁都释放后O1才能被加排他锁。
总结:可以多个事务同时获得一个对象的共享锁(同时读),有共享锁就不能再加排他锁(因为排他锁是写锁)
5. Zookeeper队列管理
两种类型的队列:
1、同步队列,当一个队列的成员都聚齐时,这个队列才可用,否则一直等待所有成员到达。
2、队列按照 FIFO 方式进行入队和出队操作。
第一类,在约定目录下创建临时目录节点,监听节点数目是否是我们要求的数目。
第二类,和分布式锁服务中的控制时序场景基本原理一致,入列有编号,出列按编号。
分布式与数据复制
Zookeeper作为一个集群提供一致的数据服务,自然,它要在所有机器间做数据复制。数据复制的好处:
1、容错:一个节点出错,不致于让整个系统停止工作,别的节点可以接管它的工作;
2、提高系统的扩展能力 :把负载分布到多个节点上,或者增加节点来提高系统的负载能力;
3、提高性能:让客户端本地访问就近的节点,提高用户访问速度。
从客户端读写访问的透明度来看,数据复制集群系统分下面两种:
1、写主(WriteMaster) :对数据的修改提交给指定的节点。读无此限制,可以读取任何一个节点。这种情况下客户端需要对读与写进行区别,俗称读写分离;
2、写任意(Write Any):对数据的修改可提交给任意的节点,跟读一样。这种情况下,客户端对集群节点的角色与变化透明。
对zookeeper来说,它采用的方式是写任意。通过增加机器,它的读吞吐能力和响应能力扩展性非常好,而写,随着机器的增多吞吐能力肯定下降(这也是它建立observer的原因),而响应能力则取决于具体实现方式,是延迟复制保持最终一致性,还是立即复制快速响应。
Zookeeper 下 Server工作状态
每个Server在工作过程中有三种状态:
LOOKING:当前Server不知道leader是谁,正在搜寻
LEADING:当前Server即为选举出来的leader
FOLLOWING:leader已经选举出来,当前Server与之同步
Zookeeper工作原理
Zookeeper 的核心是原子广播,这个机制保证了各个Server之间的同步。实现这个机制的协议叫做Zab协议。Zab协议有两种模式,它们分别是恢复模式(选主)和广播模式(同步)。当服务启动或者在领导者崩溃后,Zab就进入了恢复模式,当领导者被选举出来,且大多数Server完成了和 leader的状态同步以后,恢复模式就结束了。状态同步保证了leader和Server具有相同的系统状态。
为了保证事务的顺序一致性,zookeeper采用了递增的事务id号(zxid)来标识事务。所有的提议(proposal)都在被提出的时候加上了zxid。ZooKeeper有多种记录时间的形式,其中包含以下几个主要属性:
- Zxid
致使ZooKeeper节点状态改变的每一个操作都将使节点接收到一个Zxid格式的时间戳,并且这个时间戳全局有序。也就是说,也就是说,每个对节点的改变都将产生一个唯一的Zxid。如果Zxid1的值小于Zxid2的值,那么Zxid1所对应的事件发生在Zxid2所对应的事件之前。实际上,ZooKeeper的每个节点维护者三个Zxid值,为别为:cZxid、mZxid、pZxid。
- cZxid: 是节点的创建时间所对应的Zxid格式时间戳。
- mZxid:是节点的修改时间所对应的Zxid格式时间戳。
实现中Zxid是一个64为的数字,它高32位是epoch用来标识leader关系是否改变,每次一个leader被选出来,它都会有一个 新的epoch。低32位是个递增计数。
- 版本号
对节点的每一个操作都将致使这个节点的版本号增加。每个节点维护着三个版本号,他们分别为:
- version:节点数据版本号
- cversion:子节点版本号
- aversion:节点所拥有的ACL版本号
Zookeeper角色描述
在 ZooKeeper 中,有三种角色:
- Leader
- Follower
- Observer
- 一个 ZooKeeper 集群同一时刻只会有一个 Leader,其他都是 Follower 或 Observer。Follower 和 Observer 都能提供读服务,不能提供写服务。两者唯一的区别在于,Observer 机器不参与 Leader 选举过程,也不参与写操作的『过半写成功』策略,因此 Observer 可以在不影响写性能的情况下提升集群的读性能。
- ZooKeeper 默认只有 Leader 和 Follower 两种角色,没有 Observer 角色。为了使用 Observer 模式,在任何想变成Observer的节点的配置文件中加入:peerType=observer 并在所有 server 的配置文件中,配置成 observer 模式的 server 的那行配置追加 :observer。
-
在装有 ZooKeeper 的机器的终端执行 zookeeper-server status 可以看当前节点的 ZooKeeper 是什么角色(Leader or Follower)。
Zookeeper选主流程(basic paxos)
当leader崩溃或者leader失去大多数的follower,这时候zk进入恢复模式,恢复模式需要重新选举出一个新的leader,让所有的Server都恢复到一个正确的状态。Zk的选举算法有两种:一种是基于basic paxos实现的,另外一种是基于fast paxos算法实现的。系统默认的选举算法为fast paxos。
1.选举线程由当前Server发起选举的线程担任,其主要功能是对投票结果进行统计,并选出推荐的Server;
2.选举线程首先向所有Server发起一次询问(包括自己);
3.选举线程收到回复后,验证是否是自己发起的询问(验证zxid是否一致),然后获取对方的id(myid),并存储到当前询问对象列表中,最后获取对方提议的leader相关信息(id,zxid),并将这些信息存储到当次选举的投票记录表中;
4.收到所有Server回复以后,就计算出zxid最大的那个Server,并将这个Server相关信息设置成下一次要投票的Server;
5.线程将当前zxid最大的Server设置为当前Server要推荐的Leader,如果此时获胜的Server获得n/2 + 1的Server票数,设置当前推荐的leader为获胜的Server,将根据获胜的Server相关信息设置自己的状态,否则,继续这个过程,直到leader被选举出来。 通过流程分析我们可以得出:要使Leader获得多数Server的支持,则Server总数必须是奇数2n+1,且存活的Server的数目不得少于n+1. 每个Server启动后都会重复以上流程。在恢复模式下,如果是刚从崩溃状态恢复的或者刚启动的server还会从磁盘快照中恢复数据和会话信息,zk会记录事务日志并定期进行快照,方便在恢复时进行状态恢复。选主的具体流程图所示:
Zookeeper选主流程(fast paxos)
fast paxos流程是在选举过程中,某Server首先向所有Server提议自己要成为leader,当其它Server收到提议以后,解决epoch和 zxid的冲突,并接受对方的提议,然后向对方发送接受提议完成的消息,重复这个流程,最后一定能选举出Leader。
Zookeeper同步流程
选完Leader以后,zk就进入状态同步过程。
- Leader等待server连接;
- Follower连接leader,将最大的zxid发送给leader;
- Leader根据follower的zxid确定同步点;
- 完成同步后通知follower 已经成为uptodate状态;
-
Follower收到uptodate消息后,又可以重新接受client的请求进行服务了。
Zookeeper工作流程-Leader
1 .恢复数据;
2 .维持与Learner的心跳,接收Learner请求并判断Learner的请求消息类型;
3 .Learner的消息类型主要有PING消息、REQUEST消息、ACK消息、REVALIDATE消息,根据不同的消息类型,进行不同的处理。
PING 消息是指Learner的心跳信息;
REQUEST消息是Follower发送的提议信息,包括写请求及同步请求;
ACK消息是 Follower的对提议的回复,超过半数的Follower通过,则commit该提议;
REVALIDATE消息是用来延长SESSION有效时间。
Zookeeper工作流程-Follower
Follower主要有四个功能:
1.向Leader发送请求(PING消息、REQUEST消息、ACK消息、REVALIDATE消息);
2.接收Leader消息并进行处理;
3.接收Client的请求,如果为写请求,发送给Leader进行投票;
4.返回Client结果。
Follower的消息循环处理如下几种来自Leader的消息:
1 .PING消息: 心跳消息;
2 .PROPOSAL消息:Leader发起的提案,要求Follower投票;
3 .COMMIT消息:服务器端最新一次提案的信息;
4 .UPTODATE消息:表明同步完成;
5 .REVALIDATE消息:根据Leader的REVALIDATE结果,关闭待revalidate的session还是允许其接受消息;
6 .SYNC消息:返回SYNC结果到客户端,这个消息最初由客户端发起,用来强制得到最新的更新。
事务操作
在ZooKeeper中,能改变ZooKeeper服务器状态的操作称为事务操作。一般包括数据节点创建与删除、数据内容更新和客户端会话创建与失效等操作。对应每一个事务请求,ZooKeeper 都会为其分配一个全局唯一的事务ID,用 ZXID 表示,通常是一个64位的数字。每一个 ZXID 对应一次更新操作,从这些 ZXID 中可以间接地识别出 ZooKeeper 处理这些事务操作请求的全局顺序。
Watcher(事件监听器)
Watcher(事件监听器),是 ZooKeeper 中一个很重要的特性。ZooKeeper允许用户在指定节点上注册一些 Watcher,并且在一些特定事件触发的时候,ZooKeeper 服务端会将事件通知到感兴趣的客户端上去。该机制是 ZooKeeper 实现分布式协调服务的重要特性。
ACL(Access Control Lists)
ZooKeeper 采用 ACL(Access Control Lists)策略来进行权限控制。ZooKeeper 定义了如下5种权限。
CREATE: 创建子节点的权限。
READ: 获取节点数据和子节点列表的权限。
WRITE:更新节点数据的权限。
DELETE: 删除子节点的权限。
ADMIN: 设置节点ACL的权限。
注意:CREATE 和 DELETE 都是针对子节点的权限控制。
安装方式
Zookeeper安装方式有三种,单机模式和集群模式以及伪集群模式。
- 单机模式:Zookeeper只运行在一台服务器上,适合测试环境;
- 伪集群模式:就是在一台物理机上运行多个Zookeeper 实例;伪分布模式下Hadoop的操作和分布式模式下有着很大的不同,但是在集群为分布 式模式下对Zookeeper的操作却和集群模式下没有本质的区别
- 集群模式:Zookeeper运行于一个集群上,适合生产环境,这个计算机集群被称为一个“集合体”(ensemble)
部署须知
部署时需要注意:
- 单机单实例,只要端口不被占用即可
- 单机伪集群(单机,部署多个实例),三个端口必须修改为组组不一样
如:myid1 : 2181,3888,2888
myid2 : 2182,3788,2788
myid3 : 2183,3688,2688 - 集群(每台机器部署一个实例)
集群中实例数量为2n+1的数,如 3、5、7等,不宜太多,集群机器多了选举和数据同步耗时长,不稳定。建议三台选举+N台observer很不错。
zookeeper是基于内存同步数据的,所以集群内的节点其内存中的数据结构是完全相同的,因此效率非常高。
配置
- ZooKeeper 配置很简单,每个节点的配置文件(zoo.cfg)都是一样的,只有 myid 文件不一样。myid 的值必须是 zoo.cfg中server.{数值} 的{数值}部分。
- zookeeper有三个端口(可以修改)
- 2181:对client端提供服务
- 3888:选举leader使用
- 2888:集群内机器通讯使用(Leader监听此端口)