概率与数理统计

image.png

1. 全概率公式、贝叶斯公式

image.png

举例:


image.png

2. 先验概率、后验概率

image.png

image.png

3. 概率密度函数、分布函数

image.png
image.png

KL散度

KL散度用来做什么?
KL散度的用途:比较两个概率分布的接近程度。
在统计应用中,我们经常需要用一个简单的,近似的概率分布 f^ 来描述观察数据 D或者另一个复杂的概率分布 f。此时,我们需要一个量来衡量我们选择的近似分布 f^相比原分布f究竟损失了多少信息量,这就是KL散度起作用的地方。

在信息论这门学科中,一个很重要的目标就是量化描述数据中含有多少信息。 为此,提出了熵的概念,记作H,一个概率分布所对应的熵表达如下:
image.png

熵可以被理解为:我们编码所有信息所需要的最小位数

现在,我们能够量化数据中的信息量了,就可以来衡量近似分布带来的信息损失了。KL散度的计算公式其实是熵计算公式的简单变形,在原有概率分布 p 上,加入我们的近似概率分布 q,计算他们的每个取值对应对数的差:
image.png

KL散度计算:数据的原分布与近似分布的概率的对数差的期望值

信息熵是什么?

https://www.zhihu.com/question/22178202/answer/667876061

香农最初并没有借用“熵”这个词汇来表达他关于信息传输中的“不确定性”的度量化。他甚至都不太知晓他所考虑的量与古典热力学熵之间的类似性。他想把它称为“information(信息)”,但又认为这个名词太过大众化,已被普通老百姓的日常话语用滥了。他又考虑过就用单词“uncertainty(不确定性)”,但它却更像抽象名词,缺乏量化的余地,确实难于定夺。终于有一天,他遇见了天才的数学家冯 • 诺依曼(John von Neumann, 1903-1957)。真是找对了人!冯·诺依曼马上告诉他:

就叫它熵吧,这有两个好理由。一是你的不确定性函数已在统计物理中用到过,在那里它就叫熵。第二个理由更重要:没人真正理解熵为何物,这就让你在任何时候都可能进能退,立于不败之地。

香农的信息熵本质上是对我们司空见惯的“不确定现象”的数学化度量。譬如说,如果天气预报说“今天中午下雨的可能性是百分之九十”,我们就会不约而同想到出门带伞;如果预报说“有百分之五十的可能性下雨”,我们就会犹豫是否带伞,因为雨伞无用时确是累赘之物。显然,第一则天气预报中,下雨这件事的不确定性程度较小,而第二则关于下雨的不确定度就大多了。

image.png

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,377评论 6 496
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,390评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,967评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,344评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,441评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,492评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,497评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,274评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,732评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,008评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,184评论 1 342
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,837评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,520评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,156评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,407评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,056评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,074评论 2 352

推荐阅读更多精彩内容