问题大数相乘
计算123×456,其实12345和6789就是大数。
思路
这是分治算法思想的典型体现。计算机只会加减不会乘除的,乘法都是通过设计的算法实现的。用的是Karatsuba乘法,它是把每个大数分成2个部分,比如说大数A前面的n位分出来变成了数字a,后面的m位分出来变成了b,其实A=a×10m+b,同理B也被拆分成了c和d。则可以推出A×B=(a×10m+b)(c×10n+d)=a×c×10(m+n)+a×d×10m+b×c×10n+b×d。可以看到中间那两项因为乘方幂次不同所以不能合并,于是再分解大数的时候拆分一定要保持幂次部分相同。现在假设幂次部分都是n,则有A×B=ac×102n+(ad+bc)×10n+bd。因为计算ad+bc的话总共需要4个乘法运算,消耗有点多。因为(a+b)(c+d)=ac+ad+bc+db==>(a+b)(c+d)-ac-bd=ad+bc。又因为ac和bd已经计算出来了所以乘法步骤被降为3步。那么现在要做的就是把ac×102n、(ad+bc)×10n、bd这三部分,更确切地说是把ac、bd、(a+b)(c+d)-ac-bd相加了,于是大问题就被分解为小问题了。那么如何获取每个数字的长度呢?没办法只能除以10了,不过为了增加运算速度可以把长度作为参数传递给递归体的,这样以后就不用运算了。
使用
package com.company;
public class Main {
public static void main(String[] args) {
// write your code here
Solution.bigNumberMultiplication(12345,6789);
}
}
输出
乘积是:83810205
Process finished with exit code 0
实现
package com.company;
public class Solution {
/**
* 两个大数相乘,这是分治算法的体现。
* @param A
* @param B
*/
static public void bigNumberMultiplication(int A,int B) {
if (A < 0 || B < 0) {
System.out.println("输入错误!");
return;
}
//首先计算A和B的长度
int aLength = Solution.getNumberLength(A);
int bLength = Solution.getNumberLength(B);
if (aLength == -1 || bLength == -1) {
System.out.println("输入错误!");
return;
}
System.out.println("乘积是:" + Solution.karatsuba(A,aLength,B,bLength));
}
/**
* karatsuba算法
* @param A
* @param ALength
* @param B
* @param BLength
* @return
*/
static private int karatsuba(int A,int ALength,int B,int BLength) {
if (ALength < 2 || BLength < 2)return A*B;
//应该选取较大的长度除以2,因为这样可以首先把较大的数变成较小的数。
int middleLength = 0;
if (ALength > BLength)middleLength = ALength / 2;
else middleLength = BLength / 2;
int tenPower = Solution.getTenPower(middleLength);
int a = 0,b = 0;
int aLength = 0,bLength = 0;
if (ALength > middleLength) {
a = A / tenPower;
aLength = ALength - middleLength;
b = A % tenPower;
bLength = middleLength;
} else {
a = 0;
aLength = 0;
b = A;
bLength = ALength;
}
int c = 0,d = 0;
int cLength = 0,dLength = 0;
if (BLength > middleLength) {
c = B / tenPower;
cLength = BLength - middleLength;
d = B % tenPower;
dLength = middleLength;
} else {
c = 0;
cLength = 0;
d = B;
dLength = BLength;
}
int aMultiplyC = Solution.karatsuba(a,aLength,c,cLength);
int bMultiplyd = Solution.karatsuba(b,bLength,d,dLength);
int aPlusB = a + b;
int cPlusD = c + d;
int aPlusBLength = Solution.getNumberLength(aPlusB);
int cPlusDLength = Solution.getNumberLength(cPlusD);
int aPlusBMulitiplyCPlusD = Solution.karatsuba(aPlusB,aPlusBLength,cPlusD,cPlusDLength);
int result = aMultiplyC * tenPower * tenPower + bMultiplyd + (aPlusBMulitiplyCPlusD - aMultiplyC - bMultiplyd) * tenPower;
return result;
}
/**
* 获取10的幂次结果
* @param length
* @return
*/
static private int getTenPower(int length) {
if (length <= 0)return 1;
else {
int lengthCopy = length;
int zeroCounter = 1;
while (lengthCopy > 0) {
lengthCopy--;
zeroCounter *= 10;
}
return zeroCounter;
}
}
/**
* 获取一个数字的长度
* @param number
* @return
*/
static private int getNumberLength(int number) {
if (number < 0)return -1;
else {
int numberCopy = number;
int bitCounter = 0;
while (numberCopy > 0) {
numberCopy /= 10;
bitCounter++;
}
return bitCounter;
}
}
}