利用随机森林对特征重要性进行评估

前言

随机森林是以决策树为基学习器的集成学习算法。随机森林非常简单,易于实现,计算开销也很小,更令人惊奇的是它在分类和回归上表现出了十分惊人的性能,因此,随机森林也被誉为“代表集成学习技术水平的方法”。
本文是对随机森林如何用在特征选择上做一个简单的介绍。

随机森林(RF)简介

只要了解决策树的算法,那么随机森林是相当容易理解的。随机森林的算法可以用如下几个步骤概括:

  1. 用有抽样放回的方法(bootstrap)从样本集中选取n个样本作为一个训练集
  2. 用抽样得到的样本集生成一棵决策树。在生成的每一个结点:
    1. 随机不重复地选择d个特征
    2. 利用这d个特征分别对样本集进行划分,找到最佳的划分特征(可用基尼系数、增益率或者信息增益判别)
  3. 重复步骤1到步骤2共k次,k即为随机森林中决策树的个数。
  4. 用训练得到的随机森林对测试样本进行预测,并用票选法决定预测的结果。
    下图比较直观地展示了随机森林算法:
图1:随机森林算法示意图

没错,就是这个到处都是随机取值的算法,在分类和回归上有着极佳的效果,是不是觉得强的没法解释~
然而本文的重点不是这个,而是接下来的特征重要性评估。

特征重要性评估

sklearn 已经帮我们封装好了一切,我们只需要调用其中的函数即可。 我们以UCI上葡萄酒的例子为例,首先导入数据集。

import pandas as pd
url = 'http://archive.ics.uci.edu/ml/machine-learning-databases/wine/wine.data'
df = pd.read_csv(url, header = None)
df.columns = ['Class label', 'Alcohol', 'Malic acid', 'Ash', 
              'Alcalinity of ash', 'Magnesium', 'Total phenols', 
              'Flavanoids', 'Nonflavanoid phenols', 'Proanthocyanins', 
              'Color intensity', 'Hue', 'OD280/OD315 of diluted wines', 'Proline']

然后,我们来大致看下这是一个怎么样的数据集

import numpy as np
np.unique(df['Class label'])

输出为

array([1, 2, 3], dtype=int64)

可见共有3个类别。然后再来看下数据的信息:

df.info()

输出为:

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 178 entries, 0 to 177
Data columns (total 14 columns):
Class label                     178 non-null int64
Alcohol                         178 non-null float64
Malic acid                      178 non-null float64
Ash                             178 non-null float64
Alcalinity of ash               178 non-null float64
Magnesium                       178 non-null int64
Total phenols                   178 non-null float64
Flavanoids                      178 non-null float64
Nonflavanoid phenols            178 non-null float64
Proanthocyanins                 178 non-null float64
Color intensity                 178 non-null float64
Hue                             178 non-null float64
OD280/OD315 of diluted wines    178 non-null float64
Proline                         178 non-null int64
dtypes: float64(11), int64(3)
memory usage: 19.5 KB

可见除去class label之外共有13个特征,数据集的大小为178。

按照常规做法,将数据集分为训练集和测试集。此处注意:sklearn.cross_validation 模块在0.18版本中被弃用,支持所有重构的类和函数都被移动到了model_selection模块。从sklearn.model_selection引入train_test_split

from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
x, y = df.iloc[:, 1:].values, df.iloc[:, 0].values
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size = 0.3, random_state = 0)
feat_labels = df.columns[1:]
forest = RandomForestClassifier(n_estimators=10000, random_state=0, n_jobs=-1)
forest.fit(x_train, y_train)

好了,这样一来随机森林就训练好了,其中已经把特征的重要性评估也做好了,我们拿出来看下。

importances = forest.feature_importances_
indices = np.argsort(importances)[::-1]
for f in range(x_train.shape[1]):
    print("%2d) %-*s %f" % (f + 1, 30, feat_labels[indices[f]], importances[indices[f]]))

输出的结果为

 1) Color intensity                0.182483
 2) Proline                        0.158610
 3) Flavanoids                     0.150948
 4) OD280/OD315 of diluted wines   0.131987
 5) Alcohol                        0.106589
 6) Hue                            0.078243
 7) Total phenols                  0.060718
 8) Alcalinity of ash              0.032033
 9) Malic acid                     0.025400
10) Proanthocyanins                0.022351
11) Magnesium                      0.022078
12) Nonflavanoid phenols           0.014645
13) Ash                            0.013916

对的就是这么方便。
如果要筛选出重要性比较高的变量的话,这么做就可以

threshold = 0.15
x_selected = x_train[:, importances > threshold]
x_selected.shape

输出为

(124, 3)

这样,帮我们选好了3个重要性大于0.15的特征。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,744评论 6 502
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,505评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 163,105评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,242评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,269评论 6 389
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,215评论 1 299
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,096评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,939评论 0 274
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,354评论 1 311
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,573评论 2 333
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,745评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,448评论 5 344
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,048评论 3 327
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,683评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,838评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,776评论 2 369
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,652评论 2 354

推荐阅读更多精彩内容