Redis的N种妙用你知道多少

redis是键值对的数据库,常用的五种数据类型为字符串类型(string),散列类型(hash),列表类型(list),集合类型(set),有序集合类型(zset)

Redis用作缓存,主要两个用途:高性能,高并发,因为内存天然支持高并发

应用场景

分布式锁(string)

setnx key value,当key不存在时,将 key 的值设为 value ,返回1。若给定的 key 已经存在,则setnx不做任何动作,返回0。

当setnx返回1时,表示获取锁,做完操作以后del key,表示释放锁,如果setnx返回0表示获取锁失败,整体思路大概就是这样,细节还是比较多的,有时间单开一篇来讲解

计数器(string)

如知乎每个问题的被浏览器次数

Redis的N种妙用,不仅仅是缓存
Redis的N种妙用,不仅仅是缓存

消息队列(list)

在list里面一边进,一边出即可

Redis的N种妙用,不仅仅是缓存
Redis的N种妙用,不仅仅是缓存

新浪/Twitter用户消息列表(list)

Redis的N种妙用,不仅仅是缓存

假如说小编li关注了2个微博a和b,a发了一条微博(编号为100)就执行如下命令

Redis的N种妙用,不仅仅是缓存

b发了一条微博(编号为200)就执行如下命令:

Redis的N种妙用,不仅仅是缓存

假如想拿最近的10条消息就可以执行如下命令(最新的消息一定在list的最左边):

Redis的N种妙用,不仅仅是缓存

抽奖活动(set)

Redis的N种妙用,不仅仅是缓存

实现点赞,签到,like等功能(set)

Redis的N种妙用,不仅仅是缓存
Redis的N种妙用,不仅仅是缓存

实现关注模型,可能认识的人(set)

Redis的N种妙用,不仅仅是缓存

seven关注的人

sevenSub -> {qing, mic, james}

青山关注的人

qingSub->{seven,jack,mic,james}

Mic关注的人

MicSub->{seven,james,qing,jack,tom}

Redis的N种妙用,不仅仅是缓存

电商商品筛选(set)

Redis的N种妙用,不仅仅是缓存

每个商品入库的时候即会建立他的静态标签列表如,品牌,尺寸,处理器,内存

Redis的N种妙用,不仅仅是缓存

排行版(zset)

redis的zset天生是用来做排行榜的、好友列表, 去重, 历史记录等业务需求

Redis的N种妙用,不仅仅是缓存
Redis的N种妙用,不仅仅是缓存

过期策略

定期删除

redis 会将每个设置了过期时间的 key 放入到一个独立的字典中,以后会定期遍历这个字典来删除到期的 key。

定期删除策略

Redis 默认会每秒进行十次过期扫描(100ms一次),过期扫描不会遍历过期字典中所有的 key,而是采用了一种简单的贪心策略。

从过期字典中随机 20 个 key;

删除这 20 个 key 中已经过期的 key;

如果过期的 key 比率超过 1/4,那就重复步骤 1;

惰性删除

除了定期遍历之外,它还会使用惰性策略来删除过期的 key,所谓惰性策略就是在客户端访问这个 key 的时候,redis 对 key 的过期时间进行检查,如果过期了就立即删除,不会给你返回任何东西。

定期删除是集中处理,惰性删除是零散处理。

为什么要采用定期删除+惰性删除2种策略呢?

如果过期就删除。假设redis里放了10万个key,都设置了过期时间,你每隔几百毫秒,就检查10万个key,那redis基本上就死了,cpu负载会很高的,消耗在你的检查过期key上了

但是问题是,定期删除可能会导致很多过期key到了时间并没有被删除掉,那咋整呢?所以就是惰性删除了。这就是说,在你获取某个key的时候,redis会检查一下 ,这个key如果设置了过期时间那么是否过期了?如果过期了此时就会删除,不会给你返回任何东西。

并不是key到时间就被删除掉,而是你查询这个key的时候,redis再懒惰的检查一下

通过上述两种手段结合起来,保证过期的key一定会被干掉。

所以说用了上述2种策略后,下面这种现象就不难解释了:数据明明都过期了,但是还占有着内存

内存淘汰策略

这个问题可能有小伙伴们遇到过,放到Redis中的数据怎么没了?

因为Redis将数据放到内存中,内存是有限的,比如redis就只能用10个G,你要是往里面写了20个G的数据,会咋办?当然会干掉10个G的数据,然后就保留10个G的数据了。那干掉哪些数据?保留哪些数据?当然是干掉不常用的数据,保留常用的数据了

Redis提供的内存淘汰策略有如下几种:

1.noeviction 不会继续服务写请求 (DEL 请求可以继续服务),读请求可以继续进行。这样可以保证不会丢失数据,但是会让线上的业务不能持续进行。这是默认的淘汰策略。

2.volatile-lru 尝试淘汰设置了过期时间的 key,最少使用的 key 优先被淘汰。没有设置过期时间的 key 不会被淘汰,这样可以保证需要持久化的数据不会突然丢失。(这个是使用最多的)

3.volatile-ttl 跟上面一样,除了淘汰的策略不是 LRU,而是 key 的剩余寿命 ttl 的值,ttl 越小越优先被淘汰。

4.volatile-random 跟上面一样,不过淘汰的 key 是过期 key 集合中随机的 key。

5.allkeys-lru 区别于 volatile-lru,这个策略要淘汰的 key 对象是全体的 key 集合,而不只是过期的 key 集合。这意味着没有设置过期时间的 key 也会被淘汰。

6.allkeys-random 跟上面一样,不过淘汰的策略是随机的 key。allkeys-random 跟上面一样,不过淘汰的策略是随机的 key。

持久化策略

Redis的数据是存在内存中的,如果Redis发生宕机,那么数据会全部丢失,因此必须提供持久化机制。

Redis 的持久化机制有两种,第一种是快照(RDB),第二种是 AOF 日志。快照是一次全量备份,AOF 日志是连续的增量备份。快照是内存数据的二进制序列化形式,在存储上非常紧凑,而 AOF 日志记录的是内存数据修改的指令记录文本。AOF 日志在长期的运行过程中会变的无比庞大,数据库重启时需要加载 AOF 日志进行指令重放,这个时间就会无比漫长。所以需要定期进行 AOF 重写,给 AOF 日志进行瘦身。

RDB是通过Redis主进程fork子进程,让子进程执行磁盘 IO 操作来进行 RDB 持久化,AOF 日志存储的是 Redis 服务器的顺序指令序列,AOF 日志只记录对内存进行修改的指令记录。即RDB记录的是数据,AOF记录的是指令

RDB和AOF到底该如何选择?

1.不要仅仅使用 RDB,因为那样会导致你丢失很多数据,因为RDB是隔一段时间来备份数据

2.也不要仅仅使用 AOF,因为那样有两个问题,第一,通过 AOF 做冷备没有RDB恢复速度快; 第二,RDB 每次简单粗暴生成数据快照,更加健壮,可以避免 AOF 这种复杂的备份和恢复机制的 bug

3.用RDB恢复内存状态会丢失很多数据,重放AOP日志又很慢。Redis4.0推出了混合持久化来解决这个问题。将 rdb 文件的内容和增量的 AOF 日志文件存在一起。这里的 AOF 日志不再是全量的日志,而是自持久化开始到持久化结束的这段时间发生的增量 AOF 日志,通常这部分 AOF 日志很小。于是在 Redis 重启的时候,可以先加载 rdb 的内容,然后再重放增量 AOF 日志就可以完全替代之前的 AOF 全量文件重放,重启效率因此大幅得到提升。

缓存雪崩和缓存穿透

缓存雪崩是什么?

假设有如下一个系统,高峰期请求为5000次/秒,4000次走了缓存,只有1000次落到了数据库上,数据库每秒1000的并发是一个正常的指标,完全可以正常工作,但如果缓存宕机了,每秒5000次的请求会全部落到数据库上,数据库立马就死掉了,因为数据库一秒最多抗2000个请求,如果DBA重启数据库,立马又会被新的请求打死了,这就是缓存雪崩。

Redis的N种妙用,不仅仅是缓存

如何解决缓存雪崩

事前:redis高可用,主从+哨兵,redis cluster,避免全盘崩溃

事中:本地ehcache缓存 + hystrix限流&降级,避免MySQL被打死

事后:redis持久化,快速恢复缓存数据

缓存穿透是什么?

假如客户端每秒发送5000个请求,其中4000个为黑客的恶意攻击,即在数据库中也查不到。举个例子,用户id为正数,黑客构造的用户id为负数,

如果黑客每秒一直发送这4000个请求,缓存就不起作用,数据库也很快被打死。

Redis的N种妙用,不仅仅是缓存

如何解决缓存穿透

查询不到的数据也放到缓存,value为空,如set -999 “”

总而言之,缓存雪崩就是缓存失效,请求全部全部打到数据库,数据库瞬间被打死。缓存穿透就是查询了一个一定不存在的数据,并且从存储层查不到的数据没有写入缓存,这将导致这个不存在的数据每次请求都要到存储层去查询,失去了缓存的意义

想免费学习Java工程化、分布式架构、高并发、高性能、深入浅出、微服务架构、Spring,MyBatis,Netty源码分析等技术的朋友,可以加群:957734884,群里有阿里大牛直播讲解技术,以及Java大型互联网技术的视频免费分享给大家,欢迎进群一起深入交流学习。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,142评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,298评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,068评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,081评论 1 291
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,099评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,071评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,990评论 3 417
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,832评论 0 273
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,274评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,488评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,649评论 1 347
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,378评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,979评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,625评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,796评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,643评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,545评论 2 352

推荐阅读更多精彩内容