更新了!多数据集合并及去除批次效应工具使用详解!

01—研究背景

批次效应表示样品在不同批次中处理和测量产生的试验期间记录与任何生物变异无关的技术差异。高通量测序发展到现在,已有数十年,产生了海量的数据,数据的综合分析被认为是从基因组,转录组,蛋白组等组学数据集中提取最大有效信息的关键方法,目前这种方法更有利于研究人员从数据中发现和解决大的生物学问题[2-4]。对多个数据集进行合并是生信分析人员必备的技能之一。

然而,对数据进行合并并不是数据的简单叠加,早期的芯片测序试验中就可以观察到批次效应[5-6], 它的原因包括试验分析操作人员,时间、平台、实验室环境等[7]。由于这些非生物因素的影响容易产生批次效应。很多情况下对不同组的数据进行整合时批次效应容易被忽略。尽管良好的试验设计可以减少批次效应, 但是很难彻底消除[8]。如果不消除批次效应,对下游的分析结果会产生很大的影响,例如做差异基因分析时,筛选出的差异基因究竟是由于批次效应导致的还是真实存在的差异。

目前消除批次效应的算法比较多,我们平台根据团队的项目经验和大量的文献调研选取了R软件包sva的combat函数进行去除批次效应,ComBat是基于经典贝叶斯的分析方法,运用已知的批次信息对高通量数据进行批次校正[9-10]。并进行尽心的打磨,配上丰富的结果展示图,可以直接插入sci写作中,为文章增色添彩。

话不多说,跟着小编一起去操作一番吧。

02—链接

http://sangerbox.com/Tool

03—使用方法

1.打开网址: http://sangerbox.com/Tool点击“多数据集合并及去除批次效应工具”即可进入分析界面。

2.准备数据: 将GSE118370、GSE27716、GSE18842三套数据来自同一注释平台(即GPL570)并下载到个人中心,如下图所示;


3.上面三套数据都有相同的格式 即行为基因名称,列为样本名称,如下图所示;


4.输入参数 如下图所示;


5.运行结果 判断结果是否完成,个人中心 任务中心查看任务是否完成,如下图所示。


04

结果展示

结果文件展示


结果展示


在结果文件中会生成两张图片,一张是不同数据集之间每个样本的箱线图,A图分别为去除批次效应之前的箱线图与去除批次效应之后的箱线图。B图为三个数据集列之间的venn图,因为上文选择的三个数据集是同一个注释平台的,探针数目一样,所以绘制成的venn图完全重合。

参考文献

[1] Rhodes, D., Chinnaiyan, A. Integrative analysis of the cancer transcriptome. Nat Genet 37, S31–S37 (2005)[2] LI Sa, ZHAO Yiqiang. Research progress on batch effect removal methods for gene expression data[J]. Journal of Nanjing Agricultural University, 2019, 42(3): 389-397.[3] Leek J T, Scharpf R B, Bravo H C, et al. Tackling the widespread and critical impact of batch effects in high-throughput data[J]. Nat Rev Genet, 2010, 11(10): 733-739.[4] Rhodes D R, Chinnaiyan A M. Integrative analysis of the cancer transcriptome[J]. Nat Genet, 2005, 37: S31-S37[5] Lander E S. Array of hope[J]. Nature Genetics, 1999, 21(51): 3-4.[6]Akey J M, Biswas S, Leek J T, et al. On the design and analysis of gene expression studies in human populations[J]. Nat Genet, 2007, 39(7): 807-809.[7]Fare T L, Coffey E M, Dai H, et al. Effects of atmospheric ozone on microarray data quality[J]. Anal Chem, 2003, 75(17): 4672-4675.[8] Chen C, Grennan K, Badner J, et al. Removing batch effects in analysis of expression microarray data:an evaluation of six batch adjustment methods[J]. PLoS One, 2011, 6(2): e17238.[9] Johnson W E, Li C, Rabinovic A. Adjusting batch effects in microarray expression data using empirical Bayes methods[J]. Biostatistics, 2007, 8(1): 118-127. DOI:10.1093/biostatistics/kxj037[10] Muller C, Schillert A, Rothemeier C, et al. Removing batch effects from longitudinal gene expression-quantile normalization plus comBat as best approach for microarray transcriptome data[J]. PLoS One, 2016, 11(6): e0156594.

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,634评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,951评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,427评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,770评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,835评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,799评论 1 294
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,768评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,544评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,979评论 1 308
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,271评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,427评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,121评论 5 340
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,756评论 3 324
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,375评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,579评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,410评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,315评论 2 352