尼姆博弈的实现

尼姆博弈的思想主要体现为:
有三堆各若干个物品,两个人轮流从某一堆取任意多的物品,规定每次至少取一个,多者不限,最后取光者得胜。

这种情况最有意思,它与二进制有密切关系,我们用(a,b,c)表示某种局势,首先(0,0,0)显然是奇异局势,无论谁面对奇异局势,都必然失败。第二种奇异局势是(0,n,n),只要与对手拿走一样多的物品,最后都将导致(0,0,0)。仔细分析一下,(1,2,3)也是奇异局势,无论对手如何拿,接下来都可以变为(0,n,n)的情形。

计算机算法里面有一种叫做按位模2加,也叫做异或的运算,我们用符号(+)表示这种运算,先看(1,2,3)的按位模2加的结果:

1 =二进制01

2 =二进制10

3 =二进制11 (+)

———————

0 =二进制00 (注意不进位)

对于奇异局势(0,n,n)也一样,结果也是0。

任何奇异局势(a,b,c)都有a(+)b(+)c =0。

注意到异或运算的交换律和结合律,及a(+)a=0,:

a(+)b(+)(a(+)b)=(a(+)a)(+)(b(+)b)=0(+)0=0。

所以从一个非奇异局势向一个奇异局势转换的方式可以是:

1)使 a = c(+)b
2)使 b = a(+)c
3)使 c = a(+)b

分析:NP问题,必胜态N(next player wins),必败态P(previous player wins)
在必胜态时,无论对方如何将状态调整为必败态,都可以通过一定的处理来减少原有数量来达到必胜态,必胜态的保持会促使游戏的胜利,故游戏的关键就在于是否可以抢夺到必胜态。
假设最后拿到物品的人为胜。

必败局面:也叫奇异局势。无论做出何出操作,最终结果都是输的局面。必败局面经过2次操作后,可以达到另一个必败局面。

必胜局面:经过1次操作后可以达到必败局面。

即当前局面不是必败局面就是必胜局面,而必胜局面可以一步转变成必败局面。

最终状态:
(1)最后剩下一堆物品;(必胜局面)

(2)剩下两堆,每堆一个;(必败局面)

(3)当物品剩下两堆,其中一堆只剩下1颗,另一堆剩下多于n颗物品时,当前取的人只需将多于1颗的那一堆取出n-1颗,则局面变为刚才提到的必败局面。(必胜局面)

下面便是判断是否能获胜的关键:即是否处于奇异局势:
1)将每一组的所有数字按照二进制数表示出来,进行异或,如果异或的结果为零则是必败情况,反之,若不为零,则是必胜情况。
2)在必胜的情况下,由于所有的数进行异或之后是大于零的,那么一定有一个最大的位数和空位取异或后得到该大于零的最大位数(如:两堆物品,去异或后的二进制表示为10,那么,其中大的一定是两位,两个数即为111或100),如果想要把必胜转为必败情况,只需要将大的数取一定数量,使最高位相同,且之后的数也具备一定条件,使取异或后的值为零。

分析至此,便可以根据以上的推断已知每堆的数量和堆数来对情况进行推断以及代码实现。

C:
#include <cstdio>
using namespace std;
int main(){
    int m,ans,n;
    while(~scanf("%d",&m)){
        n=ans=0;
        while(m--)
            scanf("%d",&n),ans^=n,printf("ans=%d\n",ans);
        if(ans)printf("Yes\n");
        else printf("No\n");
    }
}
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,634评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,951评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,427评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,770评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,835评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,799评论 1 294
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,768评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,544评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,979评论 1 308
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,271评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,427评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,121评论 5 340
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,756评论 3 324
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,375评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,579评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,410评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,315评论 2 352

推荐阅读更多精彩内容

  • 有一种很有意思的游戏,就是有物体若干堆,可以是火柴棍或是围棋子等等均可。两个人轮流从堆中取物体若干,规定最后取光物...
    moosoo阅读 657评论 0 0
  • 威佐夫博奕(Wythoff Game):有两堆各若干个物品,两个人轮流从某一堆或同时从两堆中取同样多的物品,规定每...
    碧影江白阅读 1,190评论 0 0
  • (一)巴什博弈只有一堆n个物品,两个人轮流从这堆物品中取物,规定每次至少取一个,最多取m个。最后取光者得胜。显然,...
    Gitfan阅读 918评论 0 0
  • 文集目录 ps:喜欢的点赞哦 android性能跟踪分析工具系列 - 目录 找到一篇GPU 呈现模式中基础概念解释...
    前行的乌龟阅读 5,900评论 0 4