Kafka系列-API(分区机制)

Kafka分区机制介绍与示例

分区规则

Kafka中可以将Topic从物理上划分成一个或多个分区(Partition),每个分区在物理上对应一个文件夹,以”topicName_partitionIndex”的命名方式命名,该文件夹下存储这个分区的所有消息(.log)和索引文件(.index),这使得Kafka的吞吐率可以水平扩展。

生产者在生产数据的时候,可以为每条消息指定Key,这样消息被发送到broker时,会根据分区规则选择被存储到哪一个分区中,如果分区规则设置的合理,那么所有的消息将会被均匀的分布到不同的分区中,这样就实现了负载均衡和水平扩展。另外,在消费者端,同一个消费组可以多线程并发的从多个分区中同时消费数据(后续将介绍这块)。

上面所说的分区规则,是实现了kafka.producer.Partitioner接口的类,可以自定义。比如,下面的代码SimplePartitioner中,将消息的key做了hashcode,然后和分区数(numPartitions)做模运算,使得每一个key都可以分布到一个分区中:

package com.lxw1234.kafka;
 
import kafka.producer.Partitioner;
import kafka.utils.VerifiableProperties;
 
public class SimplePartitioner implements Partitioner {
    
    public SimplePartitioner (VerifiableProperties props) {
    }
    
    @Override
    public int partition(Object key, int numPartitions) {
        int partition = 0;
        String k = (String)key;
        partition = Math.abs(k.hashCode()) % numPartitions;
        return partition;
    }
    
}

在创建Topic时候可以使用–partitions <numPartitions>指定分区数。也可以在server.properties配置文件中配置参数num.partitions来指定默认的分区数。

但有一点需要注意,为Topic创建分区时,分区数最好是broker数量的整数倍,这样才能是一个Topic的分区均匀的分布在整个Kafka集群中

现在创建一个topic “lxw1234”,为该topic指定4个分区,那么这4个分区将会在每个broker上各分布一个:

./kafka-topics.sh 
--create 
--zookeeper zk1:2181,zk2:2181,zk3:2181 
--replication-factor 1
--partitions 4 
--topic lxw1234

带分区规则的生产者

现在用一个生产者示例(PartitionerProducer),向Topic lxw1234中发送消息。该生产者使用的分区规则,就是上面的SimplePartitioner。从0-10一共11条消息,每条消息的key为”key”+index,消息内容为”key”+index+”–value”+index。比如:key0–value0、key1–value1、、、key10–value10。

package com.lxw1234.kafka;
 
import java.util.Properties;
 
import kafka.javaapi.producer.Producer;
import kafka.producer.KeyedMessage;
import kafka.producer.ProducerConfig;
 
public class PartitionerProducer {
    public static void main(String[] args) {
        Properties props = new Properties();
        props.put("serializer.class", "kafka.serializer.StringEncoder");
        props.put("metadata.broker.list", "127.0.0.17:9091,127.0.0.17:9092,127.0.0.102:9091,127.0.0.102:9092");
        props.put("partitioner.class", "com.lxw1234.kafka.SimplePartitioner");
        Producer<String, String> producer = new Producer<String, String>(new ProducerConfig(props));
        String topic = "lxw1234";
        for(int i=0; i<=10; i++) {
            String k = "key" + i;
            String v = k + "--value" + i;
            producer.send(new KeyedMessage<String, String>(topic,k,v));
        }
        producer.close();
    }
}

理论上来说,生产者在发送消息的时候,会按照SimplePartitioner的规则,将key0做hashcode,然后和分区数(4)做模运算,得到分区索引:

hashcode(”key0”) % 4 = 1

hashcode(”key1”) % 4 = 2

hashcode(”key2”) % 4 = 3

hashcode(”key3”) % 4 = 0

​ ……

对应的消息将会被发送至相应的分区中。

统计各分区消息的消费者

下面的消费者代码用来验证,在消费数据时,打印出消息所在的分区及消息内容:

package com.lxw1234.kafka;
 
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.Properties;
 
import kafka.consumer.Consumer;
import kafka.consumer.ConsumerConfig;
import kafka.consumer.ConsumerIterator;
import kafka.consumer.KafkaStream;
import kafka.javaapi.consumer.ConsumerConnector;
import kafka.message.MessageAndMetadata;
 
public class MyConsumer {
    public static void main(String[] args) {
        String topic = "lxw1234";
        ConsumerConnector consumer = Consumer.createJavaConsumerConnector(createConsumerConfig()); 
        Map<String, Integer> topicCountMap = new HashMap<String, Integer>();
        topicCountMap.put(topic, new Integer(1));
        Map<String, List<KafkaStream<byte[], byte[]>>> consumerMap = consumer.createMessageStreams(topicCountMap);
        KafkaStream<byte[], byte[]> stream =  consumerMap.get(topic).get(0);
        ConsumerIterator<byte[], byte[]> it = stream.iterator();
        while(it.hasNext()) {
            MessageAndMetadata<byte[], byte[]> mam = it.next();
            System.out.println("consume: Partition [" + mam.partition() + "] Message: [" + new String(mam.message()) + "] ..");
        }
          
    }
    
    private static ConsumerConfig createConsumerConfig() {
        Properties props = new Properties();
        props.put("group.id","group1");
        props.put("zookeeper.connect","127.0.0.132:2181,127.0.0.133:2182,127.0.0.134:2183");
        props.put("zookeeper.session.timeout.ms", "400");
        props.put("zookeeper.sync.time.ms", "200");
        props.put("auto.commit.interval.ms", "1000");
        props.put("auto.offset.reset", "smallest");
        return new ConsumerConfig(props);
      }
}

运行程序验证结果

先启动消费者,再运行生产者。

之后在消费者的控制台可以看到如下输出:

转载:http://lxw1234.com/archives/2015/10/538.htm

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,377评论 6 496
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,390评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,967评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,344评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,441评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,492评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,497评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,274评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,732评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,008评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,184评论 1 342
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,837评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,520评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,156评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,407评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,056评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,074评论 2 352

推荐阅读更多精彩内容

  • Spring Cloud为开发人员提供了快速构建分布式系统中一些常见模式的工具(例如配置管理,服务发现,断路器,智...
    卡卡罗2017阅读 134,644评论 18 139
  • 本文转载自http://dataunion.org/?p=9307 背景介绍Kafka简介Kafka是一种分布式的...
    Bottle丶Fish阅读 5,467评论 0 34
  • kafka的定义:是一个分布式消息系统,由LinkedIn使用Scala编写,用作LinkedIn的活动流(Act...
    时待吾阅读 5,314评论 1 15
  • Kafka入门经典教程-Kafka-about云开发 http://www.aboutyun.com/threa...
    葡萄喃喃呓语阅读 10,821评论 4 54
  • 背景介绍 Kafka简介 Kafka是一种分布式的,基于发布/订阅的消息系统。主要设计目标如下: 以时间复杂度为O...
    高广超阅读 12,830评论 8 167