IR Chapter1-3

chapter 1 boolean search

布尔检索是数据库检索最基本的方法,是用逻辑“或”(+、OR)、逻辑"与"(×、AND)、逻辑"非"(-、NOT)等算符在数据库中对相关文献的定性选择的方法。

  1. 单词-文档矩阵,
  2. 索引结构是倒排索引 unit-posting,基于关键词的查找
  • 查找
  • 合并merge:按照Doc Frequency排序,从最小的数组开始合并

chapter 2 vocabulary list and posting

更多是关于web search,不是精确检索。在search前需要mapping。

1.文档处理document delineation and char seguence decoding

  • index granularity索引粒度:确定document unit
    (a message / a file /a message and its contained attachment / a book or a chapter or a sentence)
    PS: 系统需要提供可选的索引granularity

2. vocabulary

  • tokenization( segment,eliminate punctuation etc.):hyphen、space

  • match:返回内容充分满足expectations,windows->Windows、WINDOWS 各种变换的形式

  • common words(stop words,pressure for time and space):
    big list → small list → statistics
    Web search engines generally do not use stop word lists.More precise with stop words

  • Normalization (helps in queries, not in IR performance)
    standard way:create equivalence classes
    1). mapping【badcase U.S.A match USA,but C.A.T. not match cat】
    2). maintain relations
    a. index unnormalized tokens + a query expansion list
    b. index construction, index 含有token同义词的document

    3). the forms of normalization
    accents /diacritics
    capitalization/case-folding:reduce letters to lower case
    idiosyncratic issue in English:color vs colour

  • Stemming and lemmatization:reduce inflectional forms
    stemming remove derivational affixes
    lemma 还原词根

3. Faster postings list intersection

  • skip list pointer,而不是原来的逐一遍历
    【Where do we place skips?】 There is a tradeoff.
    heuristic : ` √P evenly-spaced skip pointers.

4. Positional postings and phrase queries

  • ▼ Biword indexes→phrase index
    single-word term index also needed
    【cons】
    large vocabulary→partial phrase index
  • ▲ Positional postings 位置信息索引
    【cons】
    expands posting size,depending on token
  • ▲+▼ combined scheme【biword index + position index】
    index what biword?
    • query behavior:index frequently queried phrase
    • individual word high frequency, phrase comparatively low

chapter 3 Dictionaries and tolerant retrieval(容错检索)

  • Search structures :Dictionary

  • Solution :

  1. hashing
  2. search tree【demand prescribed ordering】
    Binary tree
    B-tree
    binary tree

    B-Tree
  • Wildcard queries 通配符检索

找索引单元/term/单词,字符串查找

query:mon*
solution:regular B-Tree
process: walk down the tree following the symbol m, o, n.

query:*mon
solution:reversed B-Tree
process: walk down the tree following the symbol m, o, n.
e.g. lemon root->n->o->m->e->l

query:se*mon
solution2:permuterm indexes
solution1:regular B-Tree + reversed B-Tree
process:
search regular B-Tree, prefix se-, set A
search reversed B-Tree, suffix -mon, set B
intersect A ∩ B

General wildcard queries

  1. permuterm index
    也就是索引单元包含了首、尾的信息
    cons:the dictionary becomes quite large, lead to blowup


    image.png

    e.g. m*n → n$m → man、moron
    e.g. fi*mo*er → 首 er 尾fi → candidate terms →filter by exhaustive enumeration,检查中间是否包含"mo"
    找完单词以后,进行document retrive

  2. k-gram indexes for wildcard queries
    index k characters, with ¥ denoting beginning and end.
    相比于permuterm index,数量相对少一些
    e.g. k=3,castle →¥ca, cas, ast, stl, tle, le$
    search
    e.g. re*ve → ¥re and ve¥
    filtering demanded string-matching operation
    e.g. red* → ed¥→ retired【invalid,因为query左侧没有其他符号】

Spelling correction

1. implementation of spelling correction

2. 2 steps to solving the problem

  • edit distance
  • k-gram overlap
  1. implementation
  • 选择正确答案的原则
    选择最近的,proximity;
    选择最常见的(出现最多;使用最多)
  • forms
    isolated-term correction
    context-sensitive correction.
  1. 编辑距离的计算【动态规划】
    可以用来计算相似度
    编辑距离其实是编辑操作的最小数目
    edit operation:insert, replace, delete => 带权重的edit operation

3.k-gram索引 for spelling correction
【isolated spelling correction】
【Jaccard coefficient】
set A query里面的k-gram集合
set B term里面的k-gram集合
Jaccard coefficient = |A ∩ B| / |A ∪ B|
流程:
for t in term-posting list
   Jaccard( t ) > 阈值
   选择t作为候选

t 的 k-gram如何获得?
Jaccard = num(A&B) / num(A+B)-num(A+B)
num(A+B)是 posting hits
方法:
step1、经验方法,直接选出candidate
step2、计算编辑距离,选出具有最小edit distance的t

【context sensitive spelling correction】
query = w1 + w2 +.....wn
列举出每一个词的candidate
trim,bi-words,previous queries by users

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
【社区内容提示】社区部分内容疑似由AI辅助生成,浏览时请结合常识与多方信息审慎甄别。
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

相关阅读更多精彩内容

友情链接更多精彩内容