说说数仓(6)-关于命名规范


数仓总结目录:
说说数仓(1) - 什么是数仓
说说数仓(2) - 传统数仓与互联网数仓
说说数仓(3) - 数仓架构
说说数仓(4) - 指标字典
说说数仓(5)-最重要的维度之日期维度
说说数仓(6)-关于命名规范
说说数仓(7)-浅谈数据治理
说说数仓(8)-关于增量
说说数仓(9)-上下游约定
说说数仓(10)-任务注释


话说,没有规矩不成方圆。在搭建数据平台的时候,在数据组内部,一定要先制定好各种规范,越早越好,并且不断的监督大家是否按照约定执行。一旦让大家自由发挥,后期想要统一或者重构,会浪费很大的人力成本和时间成本,记住,这都是坑。

这里以我目前公司的一些经验,分享下。

关于项目

常规来说,数仓的建设是按照数仓分层模型开发的。也有会按照业务线来分层,在各自业务线下重新分层,单独开发的。
我这里使用的是阿里云的MaxCompute,这是阿里提供的数据平台,一整套开发环境,用起来还是很方便的,省去了自建平台的麻烦。MaxCompute里面有一个项目的概念,一开始本来打算直接根据分层模型的设计来创建项目,但是由于某种原因,改成了按照业务线来创建项目。对于这个项目名,一定要想好,不管根据什么来设计,都需要想清楚,想明白,定了以后就不要再改了,也没法改。

关于词根

我忘记是不是叫“词根”了,先写着,后面找本书确认下。词根属于数仓建设中的规范,属于元数据管理的范畴。哦,现在都把这个划到数据治理的一部分。

正常来说,完整的数仓建设是包含数据治理的,只是现在谈到数仓偏向于数据建模,而谈到数据治理,更多的是关于数据规范、数据管理。

接着说我们的主角-词根。
我们学习英语的时候应该有了解过词根这个东西,它就是最细粒度的最简单的一个词语,我们主要用来规范中文和英文的映射关系。我们公司一部分业务是关于货架的,英文名是:rack,rack就是一个词根,那我们就在所有的表、字段等用到的地方都叫rack,不要叫成别的什么。这就是词根的作用,用来统一命名,表达同一个含义。
指标体系中有很多“率”的指标,都可以拆解成XXX+率,率可以叫rate,那我们所有的指标都叫做XXX+rate。
词根可以用来统一表名、字段名、主题域名等等。

表名

表名需要见名知意,通过表名就可以知道它是哪个业务域,干嘛用的,什么粒度的数据。

  • 常规表
    常规表是我们需要固化的表,是正式使用的表,是目前一段时间内需要去维护去完善的表。
    规范:分层前缀[dwd|dws|ads|bi]_业务域_主题域_XXX_粒度
    业务域、主题域我们都可以用词根的方式枚举清楚,不断完善,粒度也是同样的,主要的是时间粒度、日、月、年、周等,使用词根定义好简称。

  • 中间表
    中间表一般出现在Job中,是Job中临时存储的中间数据的表,中间表的作用域只限于当前Job执行过程中,Job一旦执行完成,该中间表的使命就完成了,是可以删除的(按照自己公司的场景自由选择,以前公司会保留几天的中间表数据,用来排查问题)。
    规范:mid_table_name_[0~9|dim]
    table_name是我们任务中目标表的名字,通常来说一个任务只有一个目标表。
    这里加上表名,是为了防止自由发挥的时候表名冲突,而末尾大家可以选择自由发挥,起一些有意义的名字,或者简单粗暴,使用数字代替,各有优劣吧,谨慎选择。
    通常会遇到需要补全维度的表,这里我喜欢使用dim结尾。

中间表在创建时,请加上 ,如果要保留历史的中间表,可以加上日期或者时间戳

drop table if exists table_name;
create table_name as xxx;
  • 临时表
    临时表是临时测试的表,是临时使用一次的表,就是暂时保存下数据看看,后续一般不再使用的表,是可以随时删除的表。
    规范:tmp_xxx
    只要加上tmp开头即可,其他名字随意,
    注意tmp开头的表不要用来实际使用,只是测试验证而已。

  • 维度表
    维度表是基于底层数据,抽象出来的描述类的表。维度表可以自动从底层表抽象出来,也可以手工来维护。
    规范:dim_xxx
    维度表,统一以dim开头,后面加上,对该指标的描述,可以自由发挥。

  • 手工表
    手工表是手工维护的表,手工初始化一次之后,一般不会自动改变,后面变更,也是手工来维护。
    一般来说,手工的数据粒度是偏细的,所以,暂时我们统一放在dwd层,后面如果有目标值或者其他类型手工数据,再根据实际情况分层。
    规范:dwd_业务域_manual_xxx
    手工表,增加特殊的主题域,manual,表示手工维护表

指标

指标的命名也参考词根,避免出现同一个指标,10个人有10个命名方法。

后记

具体操作结合公司实际情况,规范及早制定。

附上之前我们再阿里DataWorks上的一个规范示例

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,383评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,522评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,852评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,621评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,741评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,929评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,076评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,803评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,265评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,582评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,716评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,395评论 4 333
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,039评论 3 316
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,798评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,027评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,488评论 2 361
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,612评论 2 350

推荐阅读更多精彩内容