给定 n 个非负整数表示每个宽度为 1 的柱子的高度图,计算按此排列的柱子,下雨之后能接多少雨水。
上面是由数组 [0,1,0,2,1,0,1,3,2,1,2,1] 表示的高度图,在这种情况下,可以接 6 个单位的雨水(蓝色部分表示雨水)。 感谢 Marcos 贡献此图。
示例:
输入: [0,1,0,2,1,0,1,3,2,1,2,1]
输出: 6
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/trapping-rain-water
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
解法一:前后指针确认每个区间内的最大高度
class Solution {
public int trap(int[] height) {
int start = 0, end = height.length - 1;
int[] maxHeight = new int[height.length];
int total = 0;
int curMaxHeight;
while (start <= end) {
curMaxHeight = Math.min(height[start], height[end]);
for (int i = start; i <= end; i++) {
maxHeight[i] = curMaxHeight;
}
while (start <= end && height[start] <= curMaxHeight) {
start ++;
}
while (start <= end && height[end] <= curMaxHeight) {
end --;
}
}
for (int i = 0; i < height.length; i++) {
if (height[i] < maxHeight[i]) {
total += maxHeight[i] - height[i];
}
}
return total;
}
}
解法二:动态规划
class Solution {
public int trap(int[] height) {
if (height.length == 0) {
return 0;
}
// 记录每个坐标的右边最大高度
int[] rightMaxHeight = new int[height.length];
rightMaxHeight[height.length - 1] = height[height.length - 1];
for (int i = height.length - 2; i >= 0; i--) {
rightMaxHeight[i] = Math.max(rightMaxHeight[i + 1], height[i + 1]);
}
int leftMaxHeight = height[0];
int total = 0;
for (int i = 1; i < height.length; i++) {
leftMaxHeight = Math.max(leftMaxHeight, height[i - 1]);
int curMinHeight = Math.min(leftMaxHeight, rightMaxHeight[i]);
if (curMinHeight > height[i]) {
total += curMinHeight - height[i];
}
}
return total;
}
}