Python操作rabbitmq系列(六):进行RPC调用

此刻,我们已经进入第6章,是官方的最后一个环节,但是,并非本系列的最后一个环节。因为在实战中还有一些经验教训,并没体现出来。由于马上要给同事没培训celery了。我也来不及写太多。等后面,我们再慢慢补充。

RPC:是远程过程调用。百度写了一大堆。此刻,我们简单点说:比如,我们在本地的代码中调用一个函数,那么这个函数不一定有返回值,但一定有返回。若是在分布式环境中,香我们前几章的例子,发送消息出去后,发送端是不清楚客户端处理完后的结果的。由于rabbitmq的响应机制,顶多能获取到客户端的处理状态,但并不能获取处理结果。那么,我们想像本地调用那样,需要客户端处理后返回结果该怎么办呢。就是如下图:

client发送请求,同时告诉server处理完后要发送消息给:回调队列的ID:correlation_id=abc,并调用replay_to回调队列对应的回调函数。请上代码:

客户端:

客户端:发消息也收消息

import pika

import uuid

class FibonacciRpcClient(object):

def __init__(self):

# 创建连接

self.connection = pika.BlockingConnection(pika.ConnectionParameters(host='localhost'))

self.channel = self.connection.channel()

# 创建回调队列

result = self.channel.queue_declare(exclusive=True)

self.callback_queue = result.method.queue

# 这里:这个是消息发送方,当要执行回调的时候,它又是接收方

# 使用callback_queue 实现消息接收。即是回调。注意:这里的回调

# 不需要对消息进行确认。反复确认,没玩没了就成了死循环

#这里设置回调

self.channel.basic_consume(self.on_response, no_ack=True,

queue=self.callback_queue)

# 定义回调的响应函数。

# 判断:若是当前的回调ID和响应的回调ID相同,即表示,是本次请求的回调

# 原因:若是发起上百个请求,发送端总得知道回来的对应的是哪一个发送的

def on_response(self, ch, method, props, body):

if self.corr_id == props.correlation_id:

self.response = body

def call(self, n):

# 设置响应和回调通道的ID

self.response = None

self.corr_id = str(uuid.uuid4())

# properties中指定replay_to:表示回调要调用那个函数

# 指定correlation_id:表示回调返回的请求ID是那个

# body:是要交给接收端的参数

self.channel.basic_publish(exchange='',

routing_key='rpc_queue',

properties=pika.BasicProperties(

reply_to=self.callback_queue,

correlation_id=self.corr_id,

),

body=str(n))

# 监听回调

while self.response is None:

self.connection.process_data_events()

# 返回的结果是整数,这里进行强制转换

return int(self.response)

fibonacci_rpc = FibonacciRpcClient()

print(" [x] Requesting fib(30)")

response = fibonacci_rpc.call(30)

print(" [.] Got %r" % response)

服务端:

import pika

connection = pika.BlockingConnection(pika.ConnectionParameters(host='localhost'))

channel = connection.channel()

channel.queue_declare(queue='rpc_queue')

def fib(n):

if n == 0:

return 0

elif n == 1:

return 1

else:

return fib(n - 1) + fib(n - 2)

def on_request(ch, method, props, body):

#收到的消息

n = int(body)

print(" [.] fib(%s)" % n)

#要处理的任务

response = fib(n)

#发布消息。通知到客户端

ch.basic_publish(exchange='',

routing_key=props.reply_to,

properties=pika.BasicProperties(correlation_id= props.correlation_id),

body=str(response))

#手动响应

ch.basic_ack(delivery_tag=method.delivery_tag)

channel.basic_qos(prefetch_count=1)

channel.basic_consume(on_request, queue='rpc_queue')

print(" [x] Awaiting RPC requests")

channel.start_consuming()

结果:

OK,我们的rabbitmq系列,就暂时告一段落。这其中还有一个实际的问题,我们还没有解决。就是:一个消息到达队列,我们需要多少个消费端去处理,这些消费端又该如何进行管理,比如:那些消费端工作已经做完,那些有出异常挂掉,队列除了使用prefetch_count属性又该如何进一步来平衡各消费端的负载等等。看样子我们还有很多事要做

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,591评论 6 501
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,448评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,823评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,204评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,228评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,190评论 1 299
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,078评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,923评论 0 274
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,334评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,550评论 2 333
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,727评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,428评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,022评论 3 326
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,672评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,826评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,734评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,619评论 2 354

推荐阅读更多精彩内容

  • Spring Cloud为开发人员提供了快速构建分布式系统中一些常见模式的工具(例如配置管理,服务发现,断路器,智...
    卡卡罗2017阅读 134,652评论 18 139
  • 来源 RabbitMQ是用Erlang实现的一个高并发高可靠AMQP消息队列服务器。支持消息的持久化、事务、拥塞控...
    jiangmo阅读 10,357评论 2 34
  • rabbitMQ是一款基于AMQP协议的消息中间件,它能够在应用之间提供可靠的消息传输。在易用性,扩展性,高可用性...
    点融黑帮阅读 2,997评论 3 41
  • 本文章翻译自http://www.rabbitmq.com/api-guide.html,并没有及时更新。 术语对...
    joyenlee阅读 7,653评论 0 3
  • 在RabbiMQ系列(三)work queue中我们讲了怎么用work queue去分发一个耗时任务。但是如果我们...
    初级赛亚人阅读 592评论 0 0