2020-04-28

从零开始学Python【4】--pandas(序列部分)


上一期我们介绍了数据分析中常用的numpy模块,从数组的创建、元素的获取、数学+统计函数、随机数的生成、到外部文件的读取。这期我们再来介绍另一个重磅的数据分析常用模块--pandas。该模块更像是R语言中的向量、数据框的处理,接下来我们就一一介绍里面的小知识点。

序列

序列(Series)可以理解成是R语言中的向量,Python中的列表、元组的高级版本。为什么说是高级版本呢?因为序列与上期介绍的一维数组类似,具有更好的广播效应,既可以与一个标量进行运算,又可以进行元素级函数的计算。如下例子所示:

列表与常数10相加,报错,显示无法将列表与整形值连接,“+”运算在列表中是连接操作。

将上面的列表转换成一个序列后,就可以正常的完成运算,这就是序列的广播能力。同样,列表也不能用于元素级的数学函数,对比如下:

除了上面介绍序列功能,再来说说其他序列常用的场景,如序列的索引、成员关系、排重、排序、计数、抽样、统计运算等。

序列的索引:

由于序列是列表的扩张版,故序列也有一套类似于列表的索引方法,具体如下:

>need-to-insert-img

倒数的方式取元素,序列就显得不是很方便了,我们推荐使用非常棒的iat方法,该方法不管应用于序列还是数据框都非常优秀,主要体现在简介而高速。然而,实际工作中很少通过位置索引(下标)的方法获取到序列中的某些元素,例如1000个元素构造的序列,查出属于某个范围值总不能一个个去数吧?序列提供了另一种索引的方法--布尔索引。具体用法如下:

我们知道,在R语言中一个向量的元素是否包含于另一个向量,可以使用%in%函数进行判断,同理,Python中也有类似的方法。对于一个一维数组,in1d函数实现该功能;对于一个序列,isin方法可实现该功能。

numpy模块中的in1d函数也可以用于序列的成员关系的比较。

如果手中有一离散变量的序列,想查看该序列都有哪些水平,以及各个水平的频次,该如何操作?

没错,只要借助于unique函数(与R语言一样的函数)实现序列的排重,获得不同的水平值;通过使用value_counts函数(对应于R语言的table函数)对各个水平进行计数,并按频次降序呈现。

有的时候需要对某个序列进行升序或降序排序,虽然这样的场景并不多,但排序在数据框中的应用还是非常常用的,先来看看如何对序列进行排序:

s.sample(n=None, frac=None, replace=False, weights=None, random_state=None,axis=None)

n:指定抽取的样本量;

frac:指定抽取的样本比例;

replace:是否有放回抽样,默认无放回;

weights:指定样本抽中的概率,默认等概论抽样;

random_state:指定抽样的随机种子;

抽样也是数据分析中常用的方法,通过从总体中抽取出一定量的样本来推断总体水平;或者通过抽样将数据拆分成两部分,一部分建模,一部分测试。pandas模块提供了sample函数(与R语言的sample函数一致)帮我们完成抽样的任务。

由于总体就是男、女性别两个值,故需要抽出10个样本,必须有放回的抽,而且男女被抽中的概率还不一致,女被抽中的概率是0.8。

统计运算

pandas模块提供了比numpy模块更丰富的统计运算函数,而且还提供了类似于R语言中的summary汇总函数,即describe函数

其中count是序列中非缺失元素的个数。哦,对了,如何判断一个序列元素是否为缺失呢?可以使用isnull函数,等同于R语言中的is.na函数。

除此,我们再来罗列一些常用的统计函数:

s.min() # 最小值

s.quantile(q=[0,0.25,0.5,0.75,1]) # 分位数函数

s.median() # 中位数

s.mode() # 众数

s.mean() # 平均值

s.mad() # 平均绝对误差

s.max # 最大值

s.sum() # 和

s.std() # 标准差s.kurtosis() # 峰度

s.cumsum() # 和的累计,返回序列

s.cumprod() # 乘积的累积,返回序列

s.product() # 序列元素乘积

s.diff() # 序列差异(微分),返回序列

s.abs() # 绝对值,返回序列

s.pct_change() # 百分比变化 ,返回序列s.corr(s2) # 相关系数

s.ptp() # 极差 R中的range函数

今天我们的内容就介绍到这边,欢迎大家拍砖。下期我们来聊聊pandas模块的数据框

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,293评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,604评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,958评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,729评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,719评论 5 366
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,630评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,000评论 3 397
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,665评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,909评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,646评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,726评论 1 330
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,400评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,986评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,959评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,197评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 44,996评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,481评论 2 342

推荐阅读更多精彩内容