pandas 的 Category 应用

关于 pandas 的 Categorical 类型的数据,官方文档是这样描述的:

Categoricals 是 pandas 的一种数据类型,对应着被统计的变量。Categoricals 是由固定的且有限数量的变量组成的。比如:性别、社会阶层、血型、国籍、观察时段、赞美程度等等。

与其它被统计的变量相比,categorical 类型的数据可以具有特定的顺序——比如:按程度来设定,“强烈同意”与“同意”,“首次观察”与“二次观察”,但是不能做按数值来进行排序操作(比如:sort_by 之类的,换句话说,categorical 的顺序是创建时手工设定的,是静态的)

类型数据的每一个元素的值要么是预设好的类型中的某一个,要么是空值(np.nan)。顺序是由预设好的类型集合来决定的,而不是按照类型集合中各个元素的字母顺序排序的。categorical 实例的内部是由类型名字集合和一个整数组成的数组构成的,后者标明了类型集合真正的值。

对 Categorical 数据的一个直观认识

隐式创建 Categorical 数据

用一段代码从不同角度来展现一下 categorical 类型的数据。

# 先创建一个简单的 DataFrame 实例
# Terry, Hardon, Curry, Duran, James 和 Barter 代表东西部玩三打三
# 用一组数据记录各自的得分情况
import pandas as pd, numpy as np
players=['Garsol','Hardon','Bill','Duran','James','Barter']
scores=[22,34,12,31,26,19]
teams=['West','West','East','West','East','East']
df=pd.DataFrame({'player':players,'score':scores,'team':teams})
df

输出:

   player  score  team
0  Garsol     22  West
1  Hardon     34  West
2    Bill     12  East
3   Duran     31  West
4   James     26  East
5  Barter     19  East

可以看出 team 这一列,其实只有两种值:East 和 West,可以将 team 列的类型设定为 category

df.team.astype('category')
0    West
1    West
2    East
3    West
4    East
5    East
Name: team, dtype: category
Categories (2, object): [East, West]

可以看到,df.team 的变量类型变成了 category。当然,迄今为止,这个分类是我们手工标记上去的,主动给每一个球员加上了 east 或者 west 的标记。那么,如果是动态的来添加呢?比如按照得分来划分,将高于平均分的划为 Star,低于平均分的划为 Role。计算过程就应该是这样:

d=pd.Series(scores).describe()
score_ranges=[d['min']-1,d['mean'],d['max']+1]
score_labels=['Role','Star']
# 用pd.cut(ori_data, bins, labels) 方法
# 以 bins 设定的画界点来将 ori_data 归类,然后用 labels 中对应的 label 来作为分类名
df['level']=pd.cut(df['score'],score_ranges,labels=score_labels)
print 'df :'
print df
print '\n对比一下 Category 类型的数据和普通的 DataFrame中的列有什么区别'
print '\ndf[\'team\'] 是普通的 DataFrame列'
print df['team']
print '\ndf[\'level\'] 是 Category 类型的'
print df['level']
print '\n可以看出 df[\'level\'] 有点像是集合,输出信息会去重后列出组成元素'
print df['level'].get_values()
df :
   player  score  team level
0  Garsol     22  West  Role
1  Hardon     34  West  Star
2    Bill     12  East  Role
3   Duran     31  West  Star
4   James     26  East  Star
5  Barter     19  East  Role

对比一下 Category 类型的数据和普通的 DataFrame中的列有什么区别

df['team'] 是普通的 DataFrame列
0    West
1    West
2    East
3    West
4    East
5    East
Name: team, dtype: object

df['level'] 是 Category 类型的
0    Role
1    Star
2    Role
3    Star
4    Star
5    Role
Name: level, dtype: category
Categories (2, object): [Role < Star]

可以看出 df['level'] 有点像是集合,输出信息会去重后列出组成元素
['Role' 'Star' 'Role' 'Star' 'Star' 'Role']

显式创建 Categorical 数据

cg=pd.Categorical(['Role','Role','Star','Role','Killer','Star'],categories=['Role', 'Star'])
cg
[Role, Role, Star, Role, NaN, Star]
Categories (2, object): [Role, Star]

可以看到,构造方法中第二个参数是指定了实例中可以包含的元素,在第一个参数中的元素如果不在 categories 中,就会被转成NaN。
Categorical 实例可以转为 Series,被称为 categorical series

s=pd.Series(cg)
s
0    Role
1    Role
2    Star
3    Role
4     NaN
5    Star
dtype: category
Categories (2, object): [Role, Star]

也可以将 categorical 实例加入到 dataframe 实例的某一列中,被称为 categorical dataframe column:

df=pd.DataFrame({'players':['Garsol','Hardon','Bill','Duran','James','Barter']})
df['level']=cg
print df['level'],'\n\n',df.dtypes
0    Role
1    Role
2    Star
3    Role
4     NaN
5    Star
Name: level, dtype: category
Categories (2, object): [Role, Star] 
players      object
level      category
dtype: object
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,099评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,828评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,540评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,848评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,971评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,132评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,193评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,934评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,376评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,687评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,846评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,537评论 4 335
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,175评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,887评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,134评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,674评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,741评论 2 351

推荐阅读更多精彩内容