- 图片间的数学运算,如相加、按位运算等
- OpenCV函数:
cv2.add()
,cv2.addWeighted()
,cv2.bitwise_and()
图片相加
要叠加两张图片,可以用cv2.add()
函数,相加两幅图片的形状(高度/宽度/通道数)必须相同。numpy中可以直接用res = img + img1相加,但这两者的结果并不相同:
x = np.uint8([250])
y = np.uint8([10])
print(cv2.add(x, y)) # 250+10 = 260 => 255
print(x + y) # 250+10 = 260 % 256 = 4
如果是二值化图片(只有0和255两种值),两者结果是一样的(用numpy的方式更简便一些)。
图像混合
图像混合cv2.addWeighted()
也是一种图片相加的操作,只不过两幅图片的权重不一样,γ相当于一个修正值:
img1 = cv2.imread('lena_small.jpg')
img2 = cv2.imread('opencv-logo-white.png')
res = cv2.addWeighted(img1, 0.6, img2, 0.4, 0)
按位操作
按位操作包括按位与/或/非/异或操作,有什么用途呢?比如说我们要实现下图的效果:
如果将两幅图片直接相加会改变图片的颜色,如果用图像混合,则会改变图片的透明度,所以我们需要用按位操作。首先来了解一下掩膜(mask)的概念:掩膜是用一副二值化图片对另外一幅图片进行局部的遮挡,看下图就一目了然了:
所以我们的思路就是把原图中要放logo的区域抠出来,再把logo放进去就行了:
img1 = cv2.imread('lena.jpg')
img2 = cv2.imread('opencv-logo-white.png')
# 把logo放在左上角,所以我们只关心这一块区域
rows, cols = img2.shape[:2]
roi = img1[:rows, :cols]
# 创建掩膜
img2gray = cv2.cvtColor(img2, cv2.COLOR_BGR2GRAY)
ret, mask = cv2.threshold(img2gray, 10, 255, cv2.THRESH_BINARY)
mask_inv = cv2.bitwise_not(mask)
# 保留除logo外的背景
img1_bg = cv2.bitwise_and(roi, roi, mask=mask_inv)
dst = cv2.add(img1_bg, img2) # 进行融合
img1[:rows, :cols] = dst # 融合后放在原图上
经验之谈:掩膜的概念在图像混合/叠加的场景下使用较多,可以多多练习噢!
小结
-
cv2.add()
用来叠加两幅图片,cv2.addWeighted()
也是叠加两幅图片,但两幅图片的权重不一样。 -
cv2.bitwise_and()
,cv2.bitwise_not()
,cv2.bitwise_or()
,cv2.bitwise_xor()
分别执行按位与/或/非/异或运算。掩膜就是用来对图片进行全局或局部的遮挡。