DEEP-LEARNING systems tend to be one-trick wonders: great atthe task they were trained to do,but pretty awful at everything else. Now a neural network from Google suggests that AI can be multitalented after all.Most deep-learning systems arebuilt to solve specific problems,such as recognising animals in photos of the Serengeti, ortranslating between languages.But if you take, for instance, animage-recognition algorithm and retrain it to do a completely different task, such as recognising speech, it usually becomes worse at its original job.Humans don’t have that issue. We use our knowledge ofone problem to solve new tasks,and don’t usually forget how touse a skill when we start learninganother. Google’s neural networktakes a tiny step in this direction,by simultaneously learning to solve a range of differentproblems without specialising in any one area.
无标题文章
最后编辑于 :
©著作权归作者所有,转载或内容合作请联系作者
【社区内容提示】社区部分内容疑似由AI辅助生成,浏览时请结合常识与多方信息审慎甄别。
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。
【社区内容提示】社区部分内容疑似由AI辅助生成,浏览时请结合常识与多方信息审慎甄别。
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。
推荐阅读更多精彩内容
- 这是我去年在朋友圈里写的一篇文章。记得这段音乐视频刚出来的当天,我被它深深地震撼!连着看了不下30次,每一次眼泪都...