动画演示Sunday字符串匹配算法——比KMP算法快七倍!极易理解!

前言

上一篇我用动画的方式向大家详细说明了KMP算法(没看过的同学可以回去看看)。

这次我依旧采用动画的方式向大家介绍另一个你用一次就会爱上的字符串匹配算法:Sunday算法,希望能收获你的点赞关注收藏与转发哟!

KMP算法是一个里程碑似的算法,它的出现宣告了人类是找到线性时间复杂度的字符串匹配算法的。在这之后,出现了许多的字符串匹配算法,比如BM算法Sunday算法

这些算法在时间复杂度上都已经达到了线性时间。但是在实际应用的时候所耗费的时间却还是有所不同。

BM算法在实际应用中的效率已经达到了KMP算法的四五倍。

Sunday算法的效率甚至犹在BM算法之上。

并且若是两种算法都了解的同学会明白:

Sunday算法比起BM算法来,真的极其容易理解。

正文

行,咱对Sunday算法的吹捧先到这为止,下面开始正戏!

PS:以下将带匹配字符串称为文本串,将用来匹配的字符串称为模式串

为什么说Sunday算法极易理解呢?

因为它比暴力匹配算法只多了一个步骤而已!

话不多说,直接上我精心制作的GIF动态图:


Sunday算法演示

可以看到,我们只移动了三次,就直接找到了最终的结果。

Sunday算法是从前往后匹配的算法(BM算法是从后向前的),在匹配失败时重点关注的是文本串中参加匹配的最末位字符的下一位字符。

  • 如果该字符没有在模式串中出现则直接跳过,即移动位数 = 模式串长度 + 1。

  • 否则,其移动位数 = 模式串长度 - 该字符最右出现的位置(以0开始) = 模式串中该字符最右出现的位置到尾部的距离 + 1。

Sunday算法最巧妙的地方,就在于它发现匹配失败之后可以直接考察文本串中参加匹配的最末尾字符的下一个字符。

在python代码中,我们利用字典来存储模式串中每个字符最后出现的索引,这样在前期只需O(M),M为模式串长度的时间即可做完前期准备,然后再进行查询都是O(1)的时间。

同时为了防止越界,我在下面贴出来的python代码中手动在字符串末尾加上了一个'\0'字符

代码

class Sunday(object):
    def __init__(self, pattern:str):
        # 模式串和其长度
        self.pattern, self.length = pattern, len(pattern)
        # 根据模式串构建的偏移字典
        self.shift_dict = {}

        # 构建字典
        for index, value in enumerate(pattern):
            self.shift_dict[value] = self.length - index

    def match(self, text:str):
        i = 0 
        text_length = len(text)
        text += '\0'
        while i <= text_length - self.length:
            j = 0
            while self.pattern[j] == text[i + j]:
                j += 1
                if j >= self.length:
                    return i
            offset = self.shift_dict[text[i+self.length]] if text[i+self.length] in self.shift_dict else self.length + 1
            i += offset
        return -1

s = Sunday('nihao')
print(s.match('dasoijfoasjdoifjasdoifjoinihao'))

代码十分的简单,同时,我构造了一个类,是为了在同一个模式串下能够复用它的位置字典,简化代码。

Sunday算法与KMP算法大比拼

在写完代码之后,我对KMP算法和Sunday算法的匹配时间进行了一个粗略的检测,检测结果如下:

检测结果

amazing!Sunday算法的平均匹配速度达到了KMP算法的七倍左右!

对KMP和Sunday各自构造了一个对象,然后每次生成一个随机的十万个字符长度的字符串让它们俩分别开始匹配。

生成-->匹配这个过程循环一百遍,最终计算平均时间。如果有大佬觉得不放心的,我在下方放出检测代码,大家可以自行修改测试,拿去即可用!

检测代码如下

class KMP():
    def __init__(self, ss: str) -> list:
        self.length = len(ss)
        self.next_lst = [0 for _ in range(self.length)]
        self.next_lst[0] = -1
        i = 0
        j = -1
        while i < self.length - 1:
            if j == -1 or ss[i] == ss[j]:
                i += 1
                j += 1
                if ss[i] == ss[j]:
                    self.next_lst[i] = self.next_lst[j]
                else:
                    self.next_lst[i] = j
            else:
                j = self.next_lst[j]
        self.pattern = ss
    
    def match(self, ss:str):
        ans_lst = []
        j = 0
        for i in range(len(ss)):
            if ss[i] != self.pattern[j]:
                j = self.next_lst[j] if self.next_lst[j] != -1 else 0
            if ss[i] == self.pattern[j]:
                j += 1
            if j == self.length:
                return i + 1 - self.length
        return -1

class Sunday(object):
    def __init__(self, pattern:str):
        # 模式串和其长度
        self.pattern, self.length = pattern, len(pattern)
        # 根据模式串构建的偏移字典
        self.shift_dict = {}

        # 构建字典
        for index, value in enumerate(pattern):
            self.shift_dict[value] = self.length - index

    def match(self, text:str):
        i = 0 
        text_length = len(text)
        text += '\0'
        while i <= text_length - self.length:
            j = 0
            while self.pattern[j] == text[i + j]:
                j += 1
                if j >= self.length:
                    return i
            offset = self.shift_dict[text[i+self.length]] if text[i+self.length] in self.shift_dict else self.length + 1
            i += offset
        return -1


import random
import time
sunday = Sunday('helloworld')
kmp = KMP('helloworld')
kmp_average_time = 0
sunday_average_time = 0
for i in range(100):
    ss = ''.join([chr(random.randint(97, 122)) for _ in range(100000)])

    st = time.process_time()
    sunday.match(ss)
    ed = time.process_time()
    sunday_average_time += ed - st

    st = time.process_time()
    kmp.match(ss)
    ed = time.process_time()
    kmp_average_time += ed - st

print('kmp平均时间: {}'.format(kmp_average_time / 100))
print('sunday平均时间: {}'.format(sunday_average_time / 100))

最后

最后,如果你觉得这篇文章对你有帮助的话呢,给我点个关注,收藏吧!

我的个人公众号是【程序小员】,欢迎你的关注,你的认可是我最大的动力!

我会持续更新对你有帮助的文章!

我是落阳,谢谢你的到访!

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,718评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,683评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,207评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,755评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,862评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,050评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,136评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,882评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,330评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,651评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,789评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,477评论 4 333
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,135评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,864评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,099评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,598评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,697评论 2 351