-
Counting Bits
-
[method1] naive O(n*sizeof(int))
vector<int> countBits(int num) {
//ret[i] gives # of 1 in binary representation of i
vector<int> ret(num+1, 0);
for (int i=0; i<=num; ++i) {
int curr = i;
for (int b=0; b<8*sizeof(int); ++b) {
ret[i] += curr&1;
curr>>=1;
}
}
return ret;
}
side note
bool isPowOfTwo(int n) {
return (n & (n - 1)) == 0;
}
num/2 ===> num>>1
num%2 ===> num&1
-
[method2] observe and follow pattern: O(n)
1.observe that each number append 0 or 1 gets the new number :
e.g. 0 appends 0 =》00; 0 appends 1 =》01
容易发现,除了11最右边那个位和5的最高位,其他位对应一样。也就是说i用二进制表示时1出现的次数等于i/2中1出现的次数加1(如果i用二进制表示时最右边一位为1,否则不加1)。这样我们在计算i时可以利用前面已计算出的i/2:ret[i] = ret[i/2] + (i % 2 == 0 ? 0 : 1);2 . OR, observe that ret[i] = ret[i&(i-1)] + 1; Recall i&(i-1)==0 when i is power of 2, meaning only has one bit 1.
vector<int> countBits(int num) {
vector<int> ret(num+1, 0);
for (int i=1; i<num+1; ++i) {
// ret[i] = ret[i/2] + i%2;
ret[i] = ret[i>>1] + (i&1); //NOTE: add ()!!! + EXCUTES BEFORE &
// Or
ret[i] = ret[i&(i-1)] + 1; (nearest power of 2)
}
return ret;
}