iOS 自己实现一个递归自旋锁

什么是自旋锁?

是指当一个线程在获取锁的时候,如果锁已经被其它线程获取,那么该线程将循环等待,然后不断的判断锁是否能够被成功获取,直到获取到锁才会退出循环。

获取锁的线程一直处于活跃状态,但是并没有执行任何有效的任务,使用这种锁会造成busy-waiting,这样会使cpu资源浪费。所以自旋锁一般使用在加锁代码段执行耗时非常短的地方。

使用swift实现一个自旋锁

public class BMLock {
    private var locked = 0
    
    func lock() {
        while !OSAtomicCompareAndSwapLongBarrier(0, 1, &locked) {}
    }
    
    func unlock() {
        OSAtomicCompareAndSwapLongBarrier(1, 0, &locked)
    }
}
func OSAtomicCompareAndSwapLongBarrier(_ __oldValue: Int, _ __newValue: Int, _ __theValue: UnsafeMutablePointer<Int>!) -> Bool

这里使用了CompareAndSet(CAS)。
伪代码是这样的

func OSAtomicCompareAndSwapLongBarrier(_ __oldValue: Int, _ __newValue: Int, _ __theValue: Int) -> Bool {
        if oldValue == theValue {
            theValue = newValue
            return true
        } else {
            return false
        }
}

如果需要递归

public class BMLock {
    
    private var thread:UnsafeMutableRawPointer?
    private var count = 0
    
    public func lock() {
        if OSAtomicCompareAndSwapPtrBarrier(pthread_self(), pthread_self(), &thread) {
            count += 1
            return
        }
        while !OSAtomicCompareAndSwapPtrBarrier(nil, pthread_self(), &thread) {usleep(10)}//usleep10提高性能
    }
    
    public func unlock() {
        if count > 0 {
            count -= 1
        } else {
            OSAtomicCompareAndSwapPtrBarrier(pthread_self(), nil, &thread)
        }
    }
    
}

CompareAndSet通过原子操作实现了CAS操作,最底层基于汇编语言实现。

简单说一下原子操作的概念,“原子”代表最小的单位,所以原子操作可以看做最小的执行单位,该操作在执行完毕前不会被任何其他任务或事件打断。

这里还需要使用带barrier结尾的方法。

Memory ordering

Memory ordering用来描述系统中的processor对内存的操作如何对其它processor可见(可见的定义见前面的描述)。同时需要说明的是,大多数文献都采用reorder这个表达方式,是从执行等价的角度来描述的:比如P1上执行两个写操作WRITE(A)和WRITE(B),如果对于观察者P2来说P1|WRITE(B)先于P2|WRITE(A)可见,那么就可以认为P1的写操作发生了reorder。对读操作也是类似的。
影响memoryordering的因素很多,包括:
体系结构,X86和ARM的memory ordering就截然不同;
ARM的memory order属于weak order,与SC差距极大。如果涉及到免锁设计,对ARM体系结构, memorybarrier的使用是不可避免的。

自旋锁缺点

自旋锁会存在优先级反转问题。
具体来说,如果一个低优先级的线程获得锁并访问共享资源,这时一个高优先级的线程也尝试获得这个锁,它会处于 spin lock 的忙等状态从而占用大量 CPU。此时低优先级线程无法与高优先级线程争夺 CPU 时间,从而导致任务迟迟完不成、无法释放 lock。

苹果的OSSpinLock因为存在优先级反转问题,在 iOS 10/macOS 10.12 发布时,苹果提供了新的 os_unfair_lock 作为 OSSpinLock 的替代,并且将 OSSpinLock 标记为了 Deprecated。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,558评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,002评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,036评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,024评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,144评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,255评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,295评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,068评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,478评论 1 305
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,789评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,965评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,649评论 4 336
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,267评论 3 318
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,982评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,223评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,800评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,847评论 2 351

推荐阅读更多精彩内容