【转载】keras 自定义 loss损失函数, sample在loss上的加权 和 metric

https://blog.csdn.net/xiaojiajia007/article/details/73274669/


首先辨析一下概念:

1. loss是整体网络进行优化的目标, 是需要参与到优化运算,更新权值W的过程的

2. metric只是作为评价网络表现的一种“指标”, 比如accuracy,是为了直观地了解算法的效果,充当view的作用,并不参与到优化过程


在keras中实现自定义loss, 可以有两种方式,一种自定义 loss function, 例如:

# 方式一

def vae_loss(x, x_decoded_mean):

    xent_loss = objectives.binary_crossentropy(x, x_decoded_mean)

    kl_loss = - 0.5 * K.mean(1 + z_log_sigma - K.square(z_mean) - K.exp(z_log_sigma), axis=-1)

    return xent_loss + kl_loss

vae.compile(optimizer='rmsprop', loss=vae_loss)


或者通过自定义一个keras的层(layer)来达到目的, 作为model的最后一层,最后令model.compile中的loss=None:

# 方式二

# Custom loss layer

class CustomVariationalLayer(Layer):

    def __init__(self, **kwargs):

        self.is_placeholder = True

        super(CustomVariationalLayer, self).__init__(**kwargs)

    def vae_loss(self, x, x_decoded_mean_squash):

        x = K.flatten(x)

        x_decoded_mean_squash = K.flatten(x_decoded_mean_squash)

        xent_loss = img_rows * img_cols * metrics.binary_crossentropy(x, x_decoded_mean_squash)

        kl_loss = - 0.5 * K.mean(1 + z_log_var - K.square(z_mean) - K.exp(z_log_var), axis=-1)

        return K.mean(xent_loss + kl_loss)

    def call(self, inputs):

        x = inputs[0]

        x_decoded_mean_squash = inputs[1]

        loss = self.vae_loss(x, x_decoded_mean_squash)

        self.add_loss(loss, inputs=inputs)

        # We don't use this output.

        return x

y = CustomVariationalLayer()([x, x_decoded_mean_squash])

vae = Model(x, y)

vae.compile(optimizer='rmsprop', loss=None)

在keras中自定义metric非常简单,需要用y_pred和y_true作为自定义metric函数的输入参数   点击查看metric的设置

注意事项:

1. keras中定义loss,返回的是batch_size长度的tensor, 而不是像tensorflow中那样是一个scalar

2. 为了能够将自定义的loss保存到model, 以及可以之后能够顺利load model, 需要把自定义的loss拷贝到keras.losses.py 源代码文件下,否则运行时找不到相关信息,keras会报错

有时需要不同的sample的loss施加不同的权重,这时需要用到sample_weight,例如

        # Class weights:

        # To balance the difference in occurences of digit class labels.

        # 50% of labels that the discriminator trains on are 'fake'.

        # Weight = 1 / frequency

        cw1 = {0: 1, 1: 1}

        cw2 = {i: self.num_classes / half_batch for i in range(self.num_classes)}

        cw2[self.num_classes] = 1 / half_batch

        class_weights = [cw1, cw2]  # 使得两种loss能够一样重要

discriminator.train_on_batch(imgs, [valid, labels], class_weight=class_weights)

---------------------

作者:ustc_lijia

来源:CSDN

原文:https://blog.csdn.net/xiaojiajia007/article/details/73274669

版权声明:本文为博主原创文章,转载请附上博文链接!

©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

推荐阅读更多精彩内容

  • 谢谢戆度买给我的,超爱~
    帶風走路deFENG阅读 143评论 0 1
  • 看完这本书已有半年之久,但一直不曾动笔为它写些什么。我在等一个时机,等待某一个瞬间我的心头突然涌上一阵轻微却又裹挟...
    初憬叶阅读 362评论 0 0
  • 夕阳娇羞的颜色辉映着大地,似乎大地也是娇羞的。小桥流水,水面游鸭恬淡的像一幅画!!!你听远方想起了校园课时的铃声,...
    草芥人阅读 233评论 0 2
  • 一、你的URL链接有没有静态化 二、你的页面PR值有多少 三、关键词的位置在什么地方,你的关键词是否在标题出现,是...
    倒挂金沟铁索桥阅读 182评论 0 1
  • 运行时(runtime)是OC在运行时的一些机制和特性,包括动态类型,动态绑定,动态加载。运行时系统指的是实现OC...
    Roader阅读 793评论 0 1