[Machine Learning From Scratch]-损失函数

损失函数定义

from __future__ import division
import numpy as np
from mlfromscratch.utils import accuracy_score
from mlfromscratch.deep_learning.activation_functions import Sigmoid

class Loss(object):
    def loss(self, y_true, y_pred):
        return NotImplementedError()

    def gradient(self, y, y_pred):
        raise NotImplementedError()

    def acc(self, y, y_pred):
        return 0

class SquareLoss(Loss):
    def __init__(self): pass

    def loss(self, y, y_pred):
        return 0.5 * np.power((y - y_pred), 2)

    def gradient(self, y, y_pred):
        return -(y - y_pred)

class CrossEntropy(Loss):
    def __init__(self): pass

    def loss(self, y, p):
        # Avoid division by zero
        p = np.clip(p, 1e-15, 1 - 1e-15)
        return - y * np.log(p) - (1 - y) * np.log(1 - p)

    def acc(self, y, p):
        return accuracy_score(np.argmax(y, axis=1), np.argmax(p, axis=1))

    def gradient(self, y, p):
        # Avoid division by zero
        p = np.clip(p, 1e-15, 1 - 1e-15)
        return - (y / p) + (1 - y) / (1 - p)
©著作权归作者所有,转载或内容合作请联系作者
【社区内容提示】社区部分内容疑似由AI辅助生成,浏览时请结合常识与多方信息审慎甄别。
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

相关阅读更多精彩内容

友情链接更多精彩内容