大学渣的ISLR笔记(5)-Resampling Methods

Resampling methods are an indispensable tool in modern statistics.

In this chapter, we discuss two of the most commonly used resampling methods, cross-validationand the bootstrap.

cross-validation can be used to estimate the test error associated with a given statistical learning method in order to evaluate its performance, or to select the appropriate level of flexibility.

The process of evaluating a model’s performance is known as model assessment , whereas model the process of selecting the proper level of flexibility for a model is known as model selection .

The bootstrap is used in several contexts, most commonly to provide a measure of accuracy of a parameter estimate or of a given statistical learning method.

Cross-Validation

The Validation Set Approach


Leave-One-Out Cross-Validation

Leave-one-out cross-validation(LOOCV) is closely related to the validation set approach of Section 5.1.1, but it attempts to address that method’s drawbacks.


k-Fold Cross-Validation

An alternative to LOOCV is k-fold CV. This approach involves randomly dividing the set of observations into k groups, or folds, of approximately equal size.

In practice, one typically performs k-fold CV using k= 5 or k= 10. What is the advantage of using k= 5 or k= 10 rather than k=n? The most obvious advantage is computational. LOOCV requires fitting the statistical learning method n times.


Bias-Variance Trade-Off fork-Fold Cross-Validation

More important advantage of k-fold CV is that it often gives more accurate estimates of the test error rate than does LOOCV. This has to do with a bias-variance trade-off.

From the perspective of bias reduction, it is clear that LOOCV is to be preferred to k-fold CV.

We must also consider the procedure’s variance. It turns out that LOOCV has higher variance than does k-fold CV with k < n. The test error estimate resulting from LOOCV tends to have higher variance than does the test error estimate resulting from k-fold CV.

To summarize, there is a bias-variance trade-off associated with the choice of k in k -fold cross-validation. Typically, given these considerations, one performs k -fold cross-validation using k= 5 or k= 10, as these values have been shown empirically to yield test error rate estimates that suffer neither from excessively high bias nor from very high variance.

Cross-Validation on Classification Problems

For instance, in the classification setting, the LOOCV error rate takes the form


where Erri = I(yi = ˆyi). The k-fold CV error rate and validation set error rates are defined analogously.


The Bootstrap

The bootstrap is a widely applicable and extremely powerful statistical tool that can be used to quantify the uncertainty associated with a given estimator or statistical learning method.

Suppose that we wish to invest a fixed sum of money in two financial assets that yield returns of X and Y, respectively, where X and Y are random quantities. We will invest a fraction αof our money in X , and will invest the remaining 1 − αin Y. Since there is variability associated with the returns on these two assets, we wish to choose αto minimize the total risk, or variance, of our investment. In other words, we want to minimize Var(αX+(1 −α )Y). One can show that the value that minimizes the risk is given by


where σ2X = Var(X), σ2Y = Var(Y), and σXY= Cov(X, Y).



very close to α= 0. 6, and the standard deviation of the estimates is


In practice, however, the procedure for estimating SE(ˆα) outlined above cannot be applied, because for real data we cannot generate new samples from the original population.

Rather than repeatedly obtaining independent data sets from the population, we instead obtain distinct data sets by repeatedly sampling observations from the original data set .


最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,686评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,668评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,160评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,736评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,847评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,043评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,129评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,872评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,318评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,645评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,777评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,470评论 4 333
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,126评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,861评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,095评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,589评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,687评论 2 351

推荐阅读更多精彩内容