你还记得吗?这几个重要的初中公式

你还记得吗?这几个重要的初中公式

1. 方差: 组内差异,一般为一维数据

标准差(均方差、均方根差)【总方差】: 反映检测值与样本平均值间的偏差,为有偏估计。

在实际情况中,总体均值很难得到,往往通过抽样来计算,于是有样本方差S(无偏估计)

def cal_vars(X):

    """ 计算方差, 标准差 """

    m = sum(X)/len(X)

    varX = sum(map(lambda i: abs(i - m)**2, X))/len(X)

    stdX = math.sqrt(varX)


    return varX, stdX



### 手动计算

X = np.arange(10)

v, s = cal_vars(X)

print(f"方差1: {v}, 标准差1:{s}" )

### numpy 计算

varX = np.var(X)

stdX = np.std(X, ddof=0)

print(f"方差2: {varX}, 标准差2:{stdX}" )

print(f"方差3: {varX}, 标准差3:{math.sqrt(varX)}" )

''

方差1: 8.25, 标准差1:2.8722813232690143

方差2: 8.25, 标准差2:2.8722813232690143

方差3: 8.25, 标准差3:2.8722813232690143

''

2. 数学期望E(xi)

数学期望:离散型随机变量 xi 和对应概率的乘积。公式如下:

应用场景

3.协方差:组间差异,描述多维数据

概率论和统计学中用于衡量两个变量的总体误差。而方差是协方差的一种特殊情况,即当两个变量是相同的情况。

X = np.arange(5)

Y = np.array([10, 12, 14, 16, 18])

plt.figure(figsize=(12,6))

plt.subplot(131) ,plt.bar(X, X), plt.title("X")

plt.subplot(132) ,plt.bar(Y,Y), plt.title("Y")

plt.subplot(133) ,plt.plot(X,Y, 'o:'), plt.title("X vs Y")

covX = np.cov(X, ddof=0)

covY = np.cov(Y, ddof=0)

covXY = np.cov(X,Y, ddof=0)

print(f"X协方差:{covX}, Y协方差:{covY}, XY斜偏差: {covXY}")

##

方差:2.0,协方差:2.5

X协方差:2.0, Y协方差:8.0, XY协偏差: 4.0

X, Y 协方差为4.0 ,是正相关,从上面的图像我们也可以看到像x,y 变化是一致的。

注意:numpy cov 默认自由度为1.

协方差矩阵:[[2. 4.] [4. 8.]], 既然协方差反应了相关性,那我们怎么衡量呢?皮尔逊相关性, 很简单,用协方差除以标准差即可,就是协方差归一化的过程:

4.标准误:衡量抽样误差,越小代表抽样数据越能反应总体的特征

5. 均方误差(Mean Squared Error,MSE):均方误差是指参数估计值与参数真值之差平方的期望值。

6. 均方根误差(Root Mean square Error, RMSE): MSE的平方根,反映真实值和预测值间的偏差。

7.平均绝对误差(Mean absolute Error, MAE): 真实值与预测值绝对误差的平均值,与标准差相比,MAE离差被绝对值化,不会出现正负相抵消的情况,更好地反映预测值误差的实际情况。

今天就分享到这里, 我是paperClub。

备注:WeiXin 搜索paperClub, 添加关注并回复【paperClub】即可获取使用方法。

1. 感谢各位小伙伴的关注, 您的点赞、鼓励和留言,都是我深夜坚持的一份动力,无论褒贬,都是我们行进途中最好的回馈,也都会被认真对待。

2. 我将持续分享各类、好玩且有趣的算法应用及工程和项目,欢迎分享和转发。沟通、学习和交流,请与我联系,虽然平时忙,但留言必回,勿急,感谢理解!

3. 分享内容包括开源项目和自研项目,如在引用或使用时,考虑不周、遗漏引用信息或涉及版权等,请您及时联系。如果您对某些内容感兴趣,我们可以一起讨论、交流和学习。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,992评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,212评论 3 388
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,535评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,197评论 1 287
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,310评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,383评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,409评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,191评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,621评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,910评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,084评论 1 342
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,763评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,403评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,083评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,318评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,946评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,967评论 2 351

推荐阅读更多精彩内容