卡塔兰数

卡塔兰数是组合数学中一个常在各种计数问题中出现的数列。



除去一般的公式,卡诺兰数还有一些其他的等价表达形式。


卡诺兰数的应用
组合数学中,有非常多的组合结构可以用卡诺兰数来计数:

  • 有n个左括号(和n个右括号),随意排列组合,共有多少种合法表达式。
  • 对于一个栈而言,有n次进栈和n次出栈,随意排列组合,共有多少种合法的出入栈的形式。
  • ……

相关证明
针对上述问题为何满足卡诺兰数,给出如下证明:
令1表示入栈,0表示出栈,则共有C(2n,n)种排列方式。把出入栈按顺序一一写出,可表示为一个二进制数。但其中有一些是不合法的,下面要减去不合法的个数。
若某一种方式不合法,则在某个数2m+1处,会有m+1个0和m个1。把2m+2及其之后所有的数逐位取反,则会得到一个有着n+1个0和n-1个1的
二进制数,反之亦然。
因为在2m+1之前,无论是C(n,2n)中不合法的形式还是C(n-1,2n)都是m+1个0和m个1的全排,而2m+1之后取反是一个一一对应的操作,取反操作完之后二者又是相同的。所以这两种情况的是一一对应的,那么减去不合法的数的个数即是减去C(n,n+1)的个数。得到公式:

C(n,2n)-C(n+1,2n)

恰好与卡诺兰数的一种表达形式相同,故得证。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

推荐阅读更多精彩内容

  • C(n) = C(0)C(n-1) + C(1)C(n-2) + ... + C(n-1)C(0)或者C(n) =...
    yuansip阅读 316评论 0 0
  • 假如现在有这么一个问题: 一个序列从1到n依次入栈, 那么可能的出栈序列一共有多少种?注意: 在任意一个时刻,只要...
    爱上落入尘世间的你阅读 4,911评论 0 10
  • 首先来自百度百科Q:一个栈(无穷大)的[进栈]序列为1,2,3,…,n,有多少个不同的[出栈]序列?A1:首先,我...
    shuff1e阅读 369评论 0 0
  • 亲爱的贝贝, 周日下午我们一起练习了英语的课后精练卷,为了明天的期末英语口试。妈妈发现你的英语发音非常准确,也很愿...
    lesley_75a6阅读 252评论 0 0
  • 流转的世界,记住很多,最后遗忘很多。 怦然心动,不过是个开始,一种情愫,美好的心情,靓丽的感动。 进一步或许爱情也...
    呼吸的鲸鱼阅读 146评论 0 0