极大似然估计

极大似然估计是一种参数估计的方法(知模型求参数)。
先验概率是 知因求果,后验概率是 知果求因,极大似然是 知果求最可能的原因。
即它的核心思想是:找到参数 θ 的一个估计值,使得当前样本出现的可能性最大。

例如,当其他条件一样时,抽烟者患肺癌的概率是不抽烟者的 5 倍,那么当我们已知现在有个人是肺癌患者,问这个人是抽烟还是不抽烟?大多数人都会选择抽烟,因为这个答案是“最有可能”得到“肺癌”这样的结果。


为什么要有参数估计

当模型已定,但是参数未知时。
例如我们知道全国人民的身高服从正态分布,这样就可以通过采样,观察其结果,然后再用样本数据的结果推出正态分布的均值与方差的大概率值,就可以得到全国人民的身高分布的函数。


为什么要使似然函数取最大

极大似然估计是频率学派最经典的方法之一,认为真实发生的结果的概率应该是最大的,那么相应的参数,也应该是能让这个状态发生的概率最大的参数。


极大似然估计的计算过程

  1. 写出似然函数
  1. 一般对似然函数取对数

因为 f(x_i|θ) 一般比较小,n 比较大,连乘容易造成浮点运算下溢。

  1. 求出使得对数似然函数取最大值的参数的值
    对对数似然函数求导,令导数为0,得出似然方程,
    求解似然方程,得到的参数就是对概率模型中参数值的极大似然估计。

参考:https://www.jianshu.com/p/f1d3906e4a3e


例子

假如一个罐子里有黑白两种颜色的球,数目和比例都不知道。
假设进行一百次有放回地随机采样,每次取一个球,有七十次是白球。
问题是要求得罐中白球和黑球的比例?

假设罐中白球的比例是 p,那么黑球的比例就是 1−p。
那么似然函数:

接下来对似然函数对数化:

然后求似然方程:

最后求得 p=0.7

©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

推荐阅读更多精彩内容

  • 极大似然估计 以前多次接触过极大似然估计,但一直都不太明白到底什么原理,最近在看贝叶斯分类,对极大似然估计...
    MiracleJQ阅读 4,946评论 0 8
  • 极大似然估计是一种参数估计的方法。先验概率是 知因求果,后验概率是 知果求因,极大似然是 知果求最可能的原因。即它...
    不会停的蜗牛阅读 13,148评论 1 23
  • 现实情况中我们可能会遇到这样的一些例子,需要得到一所高校有车学生的分布情况(假定符合参数为p的伯努利分布),某地区...
    吴烨JS阅读 5,942评论 0 4
  • 满了
    cipoz阅读 767评论 0 1
  • 最后一段大意: 对于社交媒体,人们更多地是会去适应。 一些人要求社交媒体公司对平台上的信息承担更多责任,但这有利有...
    fantasyrex3阅读 3,349评论 0 0