一致性Hash算法介绍

1、Hash算法在缓存系统中应用

1.1 说明

在一个系统中,为了降低对后端数据库的压力,增加了专门的缓存服务器。每次请求时,先对请求要素做Hash,计算出命中哪个服务器(最简单的,有n台缓存服务器,可以采用将请求要素%n的方式,得到的结果就是服务器序号),然后去请求这个缓存服务器:

  • 如果有结果直接返回;
  • 如果没有结果,就请求后端数据库,然后,将结果放在这台缓存服务器中,方便下次请求查询。

1.2 缺点

这种场景下,有一个问题,当缓存服务器的台数发生变化时,会有大规模的缓存失效。
比如,n台服务器中,有一台缓存服务器故障下线了,那么这时候计算命中哪台缓存服务器的算法,就变成了对应的%(n-1)。这样,大量的缓存就都失效了。
同样地,如果添加缓存服务器,也会出现这种缓存失效的情况。

2、一致性Hash算法介绍

2.1 简单说明

前面场景中的问题,可以通过一致性Hash算法,来解决。思路其实特别简单,就是将原来的Hash桶,放在一个圆环(Hash环)上,计算后的Hash值,按照一定的方向(顺时针或者逆时针都可以),距离那个桶最近,就认为当前命中哪个桶。

2.2 程序实现思路

在程序中,无法实现原生的圆环结构,只能是通过线性结构模拟。模拟的方式很简单,只需要当找不到更大的hash值时,认为是落到第一个桶就好了。

2.3 解决分布不均的问题

这样的方法,会有一个问题,就是Hash桶中的数据分布不均匀。为了解决这个问题,可以对每一个Hash桶,分配多个虚拟节点分布在Hash环上。这样,每个桶的虚拟节点越多,数据分布就会越均匀。

2.4 程序实现

这里介绍java程序的实现,首先要了解java.util.TreeMap.tailMap()用法:

描述:
这个tailMap(K fromKey)方法用于返回此映射中键大于或等于 fromKey 的部分的视图。返回的Map由此Map支持,因此返回的Map中的更改会反映在此Map中,反之亦然。

声明:
以下是声明java.util.TreeMap.tailMap()方法。
public SortedMap<K,V> tailMap(K fromKey)

参数:
fromKey- 这是返回映射中键的低端点(包括)。

返回值:
该方法调用返回此映射中键大于或等于 fromKey 的部分的视图。

一致性Hash的java实现:

package com.lfqy.trying.consistenthash;  
  
import java.util.SortedMap;  
import java.util.TreeMap;  
  
/**  
 * Created by chengxia on 2023/3/9. */public class ConsistentHash {  
  
    private SortedMap<Integer, Node> hashCircle = new TreeMap<>();  
    private int virtualNums; // 虚拟节点数  
  
    public ConsistentHash(Node[] nodes, int virtualNums) {  
        this.virtualNums = virtualNums;  
        // 初始化一致性hash环  
        for (Node node : nodes) {  
            // 创建虚拟节点  
            add(node);  
        }  
    }  
  
    /**  
     * 添加服务器节点     *     * @param node the server  
     */    public void add(Node node) {  
        for (int i = 0; i < virtualNums; i++) {  
            hashCircle.put(hash(node.toString() + i), node);  
        }  
    }  
  
    /**  
     * 删除服务器节点     *     * @param node the server  
     */    public void remove(Node node) {  
        for (int i = 0; i < virtualNums; i++) {  
            hashCircle.remove(hash(node.toString() + i));  
        }  
    }  
  
    /**  
     * 获取服务器节点     *     * @param key the key  
     * @return the server  
     */    public Node getNode(String key) {  
        if (key == null || hashCircle.isEmpty())  
            return null;  
        int hash = hash(key);  
        if (!hashCircle.containsKey(hash)) {  
            // 未命中对应的节点  
            SortedMap<Integer, Node> tailMap = hashCircle.tailMap(hash);  
            hash = tailMap.isEmpty() ? hashCircle.firstKey() : tailMap.firstKey();  
        }  
        return hashCircle.get(hash);  
    }  
  
    /**  
     * FNV1_32_HASH算法     *     * @param key the key  
     * @return  
     */  
    private int hash(String key) {  
        final int p = 16777619;  
        int hash = (int) 2166136261L;  
        for (int i = 0; i < key.length(); i++) {  
            hash = (hash ^ key.charAt(i)) * p;  
        }  
        hash += hash << 13;  
        hash ^= hash >> 7;  
        hash += hash << 3;  
        hash ^= hash >> 17;  
        hash += hash << 5;  
        // 如果算出来的值为负数则取其绝对值  
        if (hash < 0) {  
            hash = Math.abs(hash);  
        }  
        return hash;  
    }  
  
    /**  
     * 集群节点的机器地址     */    public static class Node {  
        private String ipAddr;  
        private int port;  
        private String name;  
  
        public Node(String ipAddr, int port, String name) {  
            this.ipAddr = ipAddr;  
            this.port = port;  
            this.name = name;  
        }  
  
        @Override  
        public String toString() {  
            return name + ":<" + ipAddr + ":" + port + ">";  
        }  
    }  
}

这个例子实现,依赖于java的原生结构,非常好的展现了TreeMap和SortedMap这两个结构的使用。
如下的程序,用来计算该一致性Hash算法的数据分布最大值、最小值和方差。

package com.lfqy.trying.consistenthash;  
  
import java.util.*;  
  
/**  
 * Created by chengxia on 2023/3/9. */public class ConsistentHashTest {  
  
    public static void main(String[] args) {  
        ConsistentHash.Node[] nodes = new ConsistentHash.Node[4];  
        Map<ConsistentHash.Node, List<String>> map = new HashMap<>();  
  
        // make nodes 4台服务器节点  
        for (int i = 0; i < nodes.length; i++) {  
            nodes[i] = new ConsistentHash.Node("10.1.32.2" + i, 8070, "myNode" + i);  
        }  
  
        ConsistentHash ch = new ConsistentHash(nodes, 160);  
  
        // make keys 100万个key  
        String[] keys = new String[1_000_000];  
        for (int i = 0; i < keys.length; i++) {  
            keys[i] = "key" + (i + 17) + "ss" + (i * 19);  
        }  
  
        // make results  
        for (String key : keys) {  
            ConsistentHash.Node n = ch.getNode(key);  
            List<String> list = map.computeIfAbsent(n, k -> new ArrayList<>());  
            list.add(key);  
        }  
  
        // 统计标准差,评估服务器节点的负载均衡性  
        int[] loads = new int[nodes.length];  
        int x = 0;  
        for (Iterator<ConsistentHash.Node> i = map.keySet().iterator(); i.hasNext(); ) {  
            ConsistentHash.Node key = i.next();  
            List<String> list = map.get(key);  
            loads[x++] = list.size();  
        }  
        int min = Integer.MAX_VALUE;  
        int max = 0;  
        for (int load : loads) {  
            min = Math.min(min, load);  
            max = Math.max(max, load);  
        }  
        System.out.println("最小值: " + min + "; 最大值: " + max);  
        System.out.println("方差:" + variance(loads));  
    }  
  
    public static double variance(int[] data) {  
        double variance = 0;  
        double expect = (double) sum(data) / data.length;  
        for (double datum : data) {  
            variance += (Math.pow(datum - expect, 2));  
        }  
        variance /= data.length;  
        return Math.sqrt(variance);  
    }  
  
    private static int sum(int[] data) {  
        int sum = 0;  
        for (int i = 0; i < data.length; i++) {  
            sum += data[i];  
        }  
        return sum;  
    }  
}

运行后,输出如下:

最小值: 241154; 最大值: 253743
方差:5150.429156876153

Process finished with exit code 0

3、参考资料

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,039评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,223评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,916评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,009评论 1 291
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,030评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,011评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,934评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,754评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,202评论 1 309
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,433评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,590评论 1 346
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,321评论 5 342
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,917评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,568评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,738评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,583评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,482评论 2 352

推荐阅读更多精彩内容