【Kafka官方文档翻译】5.5.1. API 设计

原文地址:https://kafka.apache.org/0101/documentation.html#apidesign

Producer APIs

Producer API封装了底层两个Producer:

  • kafka.producer.SyncProducer
  • kafka.producer.async.AsyncProducer
    class Producer {

    /* Sends the data, partitioned by key to the topic using either the */
    /* synchronous or the asynchronous producer */
    public void send(kafka.javaapi.producer.ProducerData<K,V> producerData);

    /* Sends a list of data, partitioned by key to the topic using either */
    /* the synchronous or the asynchronous producer */
    public void send(java.util.List<kafka.javaapi.producer.ProducerData<K,V>> producerData);

    /* Closes the producer and cleans up */
    public void close();

    }

这么做的目的是通过一个简答的API暴露把所有Producer的功能暴露给Client。Kafka的Producer可以:

  • 排队/缓存多个发送请求并且异步的批量分发出去:
      kafka.producer.Producer提供批量化多个发送请求(producer.type=async),之后进行序列化并发送的分区的能力。批大小可以通过一些配置参数进行设置。将事件加入到queue中,他们会被缓冲在queue中,直到满足queue.time或batch.size达到配置的值。后台线程(kafka.producer.async.ProducerSendThread)从queue中获取数据并使用kafka.producer.EventHandler对数据进行序列化并发送到合适的分区。可以通过event.handler参数以插件的形式添加自定义的event handler程序。在producer queue pipeline处理的各个阶段可以注入回调,用于自定义的日志/跟踪代码或者监控逻辑。这可以通过实现kafka.producer.async.CallbackHandler接口并设置callback.handler参数来实现。
  • 使用用户指定的Encoder来序列化数据:
    interface Encoder<T> {
    public Message toMessage(T data);
    }

默认使用kafka.serializer.DefaultEncoder。

  • 通过用户可选的Partitioner来实现乱负载均衡:
      Partition的路由由kafka.producer.Partitioner决定。
    interface Partitioner<T> {
    int partition(T key, int numPartitions);
    }

分区选择API使用key和分区总数来选择最终的partition(返回选择的partition id)。id用于从排序的partition列表中选择最终的一个分区去发送数据。默认的分区策略是hash(key)%numPartitions。如果key是null,会随机选择一个分区。可以通过partitioner.class参数来配置特定的分区选择策略。

Consumer APIs

我们有两个级别的Consumer API。低级别的“简单的”API和单个Broker之间保持链接并且和发送到服务端的网络请求有紧密的对应关系。这个API是无状态的,每个请求都包含offset信息,允许用户维护这个元数据。
  高级别的API在Consumer端隐藏了Broker的细节,并且允许从集群消费数据而不关心底层的拓扑结构。同样维持了“哪些数据已经被消费过”的状态。高级别的API还提供了通过表达式订阅的Topic的功能(例如通过白名单或者黑名单的方式订阅)。

Low-level API

    class SimpleConsumer {

    /* Send fetch request to a broker and get back a set of messages. */
    public ByteBufferMessageSet fetch(FetchRequest request);

    /* Send a list of fetch requests to a broker and get back a response set. */
    public MultiFetchResponse multifetch(List<FetchRequest> fetches);

    /**
    * Get a list of valid offsets (up to maxSize) before the given time.
    * The result is a list of offsets, in descending order.
    * @param time: time in millisecs,
    *              if set to OffsetRequest$.MODULE$.LATEST_TIME(), get from the latest offset available.
    *              if set to OffsetRequest$.MODULE$.EARLIEST_TIME(), get from the earliest offset available.
    */
    public long[] getOffsetsBefore(String topic, int partition, long time, int maxNumOffsets);
    }

低级别的API用于实现高级别的API,也被直接使用在一些在状态上有特殊需求的“离线”Consumer。

High-level API

    /* create a connection to the cluster */
    ConsumerConnector connector = Consumer.create(consumerConfig);

    interface ConsumerConnector {

    /**
    * This method is used to get a list of KafkaStreams, which are iterators over
    * MessageAndMetadata objects from which you can obtain messages and their
    * associated metadata (currently only topic).
    *  Input: a map of <topic, #streams>
    *  Output: a map of <topic, list of message streams>
    */
    public Map<String,List<KafkaStream>> createMessageStreams(Map<String,Int> topicCountMap);

    /**
    * You can also obtain a list of KafkaStreams, that iterate over messages
    * from topics that match a TopicFilter. (A TopicFilter encapsulates a
    * whitelist or a blacklist which is a standard Java regex.)
    */
    public List<KafkaStream> createMessageStreamsByFilter(
        TopicFilter topicFilter, int numStreams);

    /* Commit the offsets of all messages consumed so far. */
    public commitOffsets()

    /* Shut down the connector */
    public shutdown()
    }

这个API围绕迭代器,通过KafkaStream类实现。一个KafkaStream表示了一个或多个分区(可以分布在不同的Broker上)组成的消息流。每个Stream被单个线程处理,客户端可以在创建流时提供需要的个数。这样,一个流背后可以是多个分区,但是一个分区只会属于一个流。
  createMessageStreams调用会把Consumer注册到Topic,促使Consumer/Broker的重新分配。API鼓励在单次调用中创建多个Stream以减少充分配的次数。createMessageStreamsByFilter方法的调用(另外的)用于注册watcher去发现匹配过滤规则的topic。createMessageStreamsByFilter返回的迭代器可以迭代来此多个Topic的消息(如果多个Topic都符合过滤规则)。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 221,695评论 6 515
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 94,569评论 3 399
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 168,130评论 0 360
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 59,648评论 1 297
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 68,655评论 6 397
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 52,268评论 1 309
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,835评论 3 421
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,740评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 46,286评论 1 318
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 38,375评论 3 340
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,505评论 1 352
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 36,185评论 5 350
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,873评论 3 333
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,357评论 0 24
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,466评论 1 272
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,921评论 3 376
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,515评论 2 359

推荐阅读更多精彩内容