Java动态规划算法

动态规划算法

一、基本概念
动态规划过程是:每次决策依赖于当前状态,又随即引起状态的转移。一个决策序列就是在变化的状态中产生出来的,所以,这种多阶段最优化决策解决问题的过程就称为动态规划。

二、基本思想与策略
基本思想与分治法类似,也是将待求解的问题分解为若干个子问题(阶段),按顺序求解子阶段,前一子问题的解,为后一子问题的求解提供了有用的信息。在求解任一子问题时,列出各种可能的局部解,通过决策保留那些有可能达到最优的局部解,丢弃其他局部解。依次解决各子问题,最后一个子问题就是初始问题的解。
由于动态规划解决的问题多数有重叠子问题这个特点,为减少重复计算,对每一个子问题只解一次,将其不同阶段的不同状态保存在一个二维数组中。
与分治法最大的差别是:适合于用动态规划法求解的问题,经分解后得到的子问题往往不是互相独立的(即下一个子阶段的求解是建立在上一个子阶段的解的基础上,进行进一步的求解)。

三、求解步骤
动态规划所处理的问题是一个多阶段决策问题,一般由初始状态开始,通过对中间阶段决策的选择,达到结束状态。这些决策形成了一个决策序列,同时确定了完成整个过程的一条活动路线(通常是求最优的活动路线)。如图所示。动态规划的设计都有着一定的模式,一般要经历以下几个步骤。
初始状态→│决策1│→│决策2│→…→│决策n│→结束状态
图1 动态规划决策过程示意图
(1)划分阶段:按照问题的时间或空间特征,把问题分为若干个阶段。在划分阶段时,注意划分后的阶段一定要是有序的或者是可排序的,否则问题就无法求解。
(2)确定状态和状态变量:将问题发展到各个阶段时所处于的各种客观情况用不同的状态表示出来。当然,状态的选择要满足无后效性。
(3)确定决策并写出状态转移方程:因为决策和状态转移有着天然的联系,状态转移就是根据上一阶段的状态和决策来导出本阶段的状态。所以如果确定了决策,状态转移方程也就可写出。但事实上常常是反过来做,根据相邻两个阶段的状态之间的关系来确定决策方法和状态转移方程。
(4)寻找边界条件:给出的状态转移方程是一个递推式,需要一个递推的终止条件或边界条件。
一般,只要解决问题的阶段、状态和状态转移决策确定了,就可以写出状态转移方程(包括边界条件)。
实际应用中可以按以下几个简化的步骤进行设计:
(1)分析最优解的性质,并刻画其结构特征。
(2)递归的定义最优解。
(3)以自底向上或自顶向下的记忆化方式(备忘录法)计算出最优值
(4)根据计算最优值时得到的信息,构造问题的最优解

基本代码

for(j=1; j<=m; j=j+1) // 第一个阶段
   xn[j] = 初始值;

 for(i=n-1; i>=1; i=i-1)// 其他n-1个阶段
   for(j=1; j>=f(i); j=j+1)//f(i)与i有关的表达式
     xi[j]=j=max(或min){g(xi-1[j1:j2]), ......, g(xi-1[jk:jk+1])};

t = g(x1[j1:j2]); // 由子问题的最优解求解整个问题的最优解的方案

print(x1[j1]);

for(i=2; i<=n-1; i=i+1)
{  
     t = t-xi-1[ji];

     for(j=1; j>=f(i); j=j+1)
        if(t=xi[ji])
             break;
}

代码参考如下:
https://github.com/zhxhcoder/codeProj

下面我们已一个小例子来展示动态规划算法:

  • 12阶的楼梯 一次走一阶或两阶 共有多少种走法

F(1)=1
F(2)=2
F(n) = F(n-1)+F(n-2)(n>=3)

public class StepUPLadder {

    public static void main(String[] args) {
        System.out.println(getStepWays(12));
    }

    static int getStepWays(int n) {
        if (n < 1) return 0;
        if (n == 1) return 1;
        if (n == 2) return 2;
        int a = 1;
        int b = 2;
        int temp = 0;
        for (int i = 3; i < n; i++) {
            temp = a + b;
            a = b;
            b = temp;
        }
        return temp;
    }
}
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

推荐阅读更多精彩内容

  • 分治算法 一、基本概念 在计算机科学中,分治法是一种很重要的算法。字面上的解释是“分而治之”,就是把一个复杂的问题...
    木叶秋声阅读 5,318评论 0 3
  • 动态规划学习-无资料 理论解释http://www.cnblogs.com/steven_oyj/archive/...
    RavenX阅读 1,048评论 0 2
  • 基本概念 动态规划过程是:每次决策依赖于当前状态,又随即引起状态的转移。一个决策序列就是在变化的状态中产生出来的,...
    羽恒阅读 324评论 0 1
  • 五大常用算法之一:分治算法 基本概念: 把一个复杂的问题分成两个或更多的相同的或相似的子问题。再把子问题分成更小的...
    親愛的破小孩阅读 4,952评论 0 1
  • 培心园阅读 194评论 0 0