常用激活函数比较

本文结构:

  1. 什么是激活函数
  2. 为什么要用
  3. 都有什么
  4. sigmoid ,ReLU, softmax 的比较
  5. 如何选择

1. 什么是激活函数

如下图,在神经元中,输入的 inputs 通过加权,求和后,还被作用了一个函数,这个函数就是激活函数 Activation Function。


2. 为什么要用

如果不用激励函数,每一层输出都是上层输入的线性函数,无论神经网络有多少层,输出都是输入的线性组合。
如果使用的话,激活函数给神经元引入了非线性因素,使得神经网络可以任意逼近任何非线性函数,这样神经网络就可以应用到众多的非线性模型中。


3. 都有什么

(1) sigmoid函数

公式:

曲线:

也叫 Logistic 函数,用于隐层神经元输出
取值范围为(0,1)
它可以将一个实数映射到(0,1)的区间,可以用来做二分类。
在特征相差比较复杂或是相差不是特别大时效果比较好。

sigmoid缺点:
激活函数计算量大,反向传播求误差梯度时,求导涉及除法
反向传播时,很容易就会出现梯度消失的情况,从而无法完成深层网络的训练

下面解释为何会出现梯度消失:

反向传播算法中,要对激活函数求导,sigmoid 的导数表达式为:

sigmoid 原函数及导数图形如下:

由图可知,导数从 0 开始很快就又趋近于 0 了,易造成“梯度消失”现象

(2) Tanh函数

公式

曲线

也称为双切正切函数
取值范围为[-1,1]。
tanh在特征相差明显时的效果会很好,在循环过程中会不断扩大特征效果。
与 sigmoid 的区别是,tanh 是 0 均值的,因此实际应用中 tanh 会比 sigmoid 更好

(3) ReLU

Rectified Linear Unit(ReLU) - 用于隐层神经元输出

公式

曲线

输入信号 <0 时,输出都是0,>0 的情况下,输出等于输入

ReLU 的优点:
Krizhevsky et al. 发现使用 ReLU 得到的 SGD 的收敛速度会比 sigmoid/tanh 快很多

ReLU 的缺点:
训练的时候很”脆弱”,很容易就”die”了
例如,一个非常大的梯度流过一个 ReLU 神经元,更新过参数之后,这个神经元再也不会对任何数据有激活现象了,那么这个神经元的梯度就永远都会是 0.
如果 learning rate 很大,那么很有可能网络中的 40% 的神经元都”dead”了。

(4) softmax函数

Softmax - 用于多分类神经网络输出

公式

举个例子来看公式的意思:

就是如果某一个 zj 大过其他 z, 那这个映射的分量就逼近于 1,其他就逼近于 0,主要应用就是多分类。

为什么要取指数,第一个原因是要模拟 max 的行为,所以要让大的更大。
第二个原因是需要一个可导的函数。


4. sigmoid ,ReLU, softmax 的比较

Sigmoid 和 ReLU 比较:

sigmoid 的梯度消失问题,ReLU 的导数就不存在这样的问题,它的导数表达式如下:

曲线如图

对比sigmoid类函数主要变化是:
1)单侧抑制
2)相对宽阔的兴奋边界
3)稀疏激活性。

Sigmoid 和 Softmax 区别:

softmax is a generalization of logistic function that “squashes”(maps) a K-dimensional vector z of arbitrary real values to a K-dimensional vector σ(z) of real values in the range (0, 1) that add up to 1.

sigmoid将一个real value映射到(0,1)的区间,用来做二分类。

而 softmax 把一个 k 维的real value向量(a1,a2,a3,a4….)映射成一个(b1,b2,b3,b4….)其中 bi 是一个 0~1 的常数,输出神经元之和为 1.0,所以相当于概率值,然后可以根据 bi 的概率大小来进行多分类的任务。

二分类问题时 sigmoid 和 softmax 是一样的,求的都是 cross entropy loss,而 softmax 可以用于多分类问题

softmax是sigmoid的扩展,因为,当类别数 k=2 时,softmax 回归退化为 logistic 回归。具体地说,当 k=2 时,softmax 回归的假设函数为:

利用softmax回归参数冗余的特点,从两个参数向量中都减去向量θ1 ,得到:

最后,用 θ′ 来表示 θ2−θ1,上述公式可以表示为 softmax 回归器预测其中一个类别的概率为

另一个类别概率的为

这与 logistic回归是一致的。

softmax建模使用的分布是多项式分布,而logistic则基于伯努利分布
  
多个logistic回归通过叠加也同样可以实现多分类的效果,但是 softmax回归进行的多分类,类与类之间是互斥的,即一个输入只能被归为一类;多个logistic回归进行多分类,输出的类别并不是互斥的,即"苹果"这个词语既属于"水果"类也属于"3C"类别。


5. 如何选择

选择的时候,就是根据各个函数的优缺点来配置,例如:

如果使用 ReLU,要小心设置 learning rate,注意不要让网络出现很多 “dead” 神经元,如果不好解决,可以试试 Leaky ReLU、PReLU 或者 Maxout.


参考资料:
http://feisky.xyz/machine-learning/neural-networks/active.html
http://jishu.y5y.com.cn/qq_17754181/article/details/56495406
https://www.zhihu.com/question/29021768
http://blog.csdn.net/cyh_24/article/details/50593400
http://www.itdadao.com/articles/c15a1000722p0.html
https://www.zhihu.com/question/23765351


推荐阅读 历史技术博文链接汇总
也许可以找到你想要的

我是 不会停的蜗牛 Alice
85后全职主妇
喜欢人工智能,行动派
创造力,思考力,学习力提升修炼进行中
欢迎您的喜欢,关注和评论!

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,080评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,422评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,630评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,554评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,662评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,856评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,014评论 3 408
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,752评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,212评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,541评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,687评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,347评论 4 331
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,973评论 3 315
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,777评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,006评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,406评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,576评论 2 349

推荐阅读更多精彩内容