近两个月来,AR热潮已经逐渐退去,很多认清“事实真相“的消费者和投资人认为AR只是个噱头。但我们始终相信,真正的AR给我们带来的不只是Pokémon、AR卡片所展示的三维动画,以Meta、HoloLens、lumus、Google Glass等主流智能眼镜为代表的AR设备具有更丰富的功能体验和视觉效果。但受制于软硬件技术,AR的发展还处于瓶颈期,市场并未真正打开。那么想要实现真正的AR,到底有哪些技术需要攻克呢?
【交互技术】
对于传统手机、电脑等智能设备,我们通过手指触控的方式来进行信息输入。但AR眼镜则不同,它几乎没有物理操作按钮,因此想要得到更好的增强现实体验,交互是首先得解决的问题。现在的方案有手势操控、语音识别、体感操控等。
手势操控:微软HoloLens是利用手势进行交互的、最有特点的AR硬件。戴上HoloLens眼镜后,可通过手指在空中点选、拖动、拉伸来控制虚拟物体、功能菜单界面。比如利用Air tap 手势打开全息图,利用Bloom 手势打开开始菜单。
语音操控:手势操控固然解放了双手,但是它有着致命的缺陷,那就是频繁的抬手会造成手臂酸软。笔者在利用Leap Motion体验小游戏时,发现这种问题尤甚。而语音操控便是更好的人机交互方案。现在微软Cortana、Google Now、苹果Siri、亚马逊Echo都是优秀的语音识别助手,但是他们的识别率还是不高,只能作为辅助操作工具,智能程度也远远达不到AR交互需求。
体感操控:假设有一天全息通话成为了现实,那么除了语音、视觉交流之外,你是否可以和远程的朋友进行体感交流(比如握手)?想要获得更加完美的增强现实体验,体感外设显然是非常重要的一环。现在,已经有不少厂商推出了体感手套、体感枪等外设。只是这些设备功能还很单薄,还有着极大的改进空间。
【镜片成像技术】
无论是增强现实还是虚拟现实,FOV 都是影响使用体验的最重要因素之一。现在的AR眼镜的可视广角普遍不高,HoloLens有30°,Meta One只有23°,而公众最为熟悉的Google Glass视角仅有12°。这是由于镜片成像技术和光学模组不成熟造成的,现在还没有太好的解决方案,但太窄的视角显然让增强现实效果大打折扣。
而除了FOV,AR在成像方面,还存在着以下的问题需要解决:
首先软件方面,底层算法(输入、输出算法)还需要加强。这需要精确的图像识别技术来判断物体所处的位置以及3D坐标等信息。不同于其他3D定位,增强现实领域的物体位置,必须结合观测者的相对位置、三维立体坐标等信息进行定位,难度要高很多。而如何利用叠加呈像算法,将相关信息叠加显示在视网膜上也是个技术难点。
而在硬件方面,光学镜片还是存在着色散和图形畸变的问题。智能眼镜成像时,视场周边会出现红绿蓝色变,这就是棱镜反射光线时常见的色散现象,可以通过软件进行色彩补偿或者通过多材料镜片来消除。前者会增加硬件负担并降低图像帧率。后者的成品率低,这也是造成AR眼睛昂贵的原因之一。而畸变则是指图像的扭曲变形现象,是由光线在投射入人眼的前后位置不同造成的。其所产生的问题与色散类似,在此不做赘述。
【SLAM技术】
SLAM 即指同步定位与建图技术。有人说,两年前,扫地机是就是它的代言人。确实,能够扫描室内布局结构,并构建、规划扫地路线的扫地机器人是SLAM技术最好代表了。其实,这项技术也可以被运用在AR领域,现阶段基于SLAM技术开发的代表性产品有微软Hololens,谷歌Project Tango以及Magic Leap。
举个例子,我们知道AR可以用来观看视频,但是如果我想把画面准确的投射到墙上或者壁橱上呢?这就需要SLAM技术。以HoloLens为例,它在启动的时候,会对用户所处空间进行扫描,从而建立房间内物体摆设的立体模型。
【HMD硬件】
Magic Leap的动态数字光场显示技术简单来说可以理解为四维光场显示技术。所谓的四维光场技术和二维显示的最大区别在于,四维显示可呈现不同深度的图像。不论用户观察近景或者远景,都可以看到真实的聚焦和失焦效果,这使得显示的内容就好像建立在真实世界之上一样。
想要获得这种效果,可通过光场相机拍摄,或者电脑渲染生成,但渲染的数据计算量,则是二维场景的百倍甚至千倍。现有的GPU、CPU处理器的集成性、散热性能还远达不到我们的期望。
而传感器、显示屏、景深摄像头在功能性和识别率上还存在很多问题亟需解决。此前微软为Xbox One推出的Kinect就是一款体感操控设备,它让玩家可以轻松的通过身体控制游戏人物的一举一动。但是因为游戏内容稀缺、体验不佳、消费者接受度不高等原因,这款产品不幸惨遭滑铁卢。
→→→ 想要了解更多,请在微信/微博搜索: 幻眼 。幻眼EYESAR提供最先进的增强现实营销解决方案,运用互联网科技拉近企业与用户的距离。关注幻眼,更多“睛”彩等着你!