LeetCode 周赛 338,贪心 / 埃氏筛 / 欧氏线性筛 / 前缀和 / 二分查找 / 拓扑排序

大家好,我是小彭。

上周末是 LeetCode 第 338 场周赛,你参加了吗?这场周赛覆盖的知识点很多,第四题称得上是近期几场周赛的天花板。


目录

2599. K 件物品的最大和(Easy)

  • 贪心、模拟 O(1)

2600. 质数减法运算(Medium)

  • 题解一:暴力枚举 + 二分查找 O(U\sqrt{U} + nlgU)
  • 题解二:Eratosthenes 埃氏筛 + 二分查找 O(UlgU + nlgU)
  • 题解三:Euler 欧氏线性筛 + 二分查找 O(U + nlgU)

2601. 使数组元素全部相等的最少操作次数

  • 前缀和 + 二分查找 O(nlgn + qlgn)

2602. 收集树中金币(Hard)

  • 拓扑排序 + 模拟 O(n)

2599. K 件物品的最大和(Easy)

题目地址

https://leetcode.cn/problems/k-items-with-the-maximum-sum/description/

题目描述

袋子中装有一些物品,每个物品上都标记着数字 10-1

给你四个非负整数 numOnesnumZerosnumNegOnesk

袋子最初包含:

  • numOnes 件标记为 1 的物品。
  • numZeroes 件标记为 0 的物品。
  • numNegOnes 件标记为 1 的物品。

现计划从这些物品中恰好选出 k 件物品。返回所有可行方案中,物品上所标记数字之和的最大值。

题解(贪心 + 模拟)

简单模拟题,优先选择 1,其次 0,最后 -1。

class Solution {
    fun kItemsWithMaximumSum(numOnes: Int, numZeros: Int, numNegOnes: Int, k: Int): Int {
        var x = k
        // 1
        val oneCnt = Math.min(numOnes, x)
        x -= oneCnt
        if (x == 0) return oneCnt
        // 0
        x -= Math.min(numZeros, x)
        if (x == 0) return oneCnt
        // -1
        return oneCnt - x
    }
}

复杂度分析:

  • 时间复杂度:O(1)
  • 空间复杂度:O(1)

2600. 质数减法运算(Medium)

题目地址

https://leetcode.cn/problems/prime-subtraction-operation/description/

题目描述

给你一个下标从 0 开始的整数数组 nums ,数组长度为 n

你可以执行无限次下述运算:

  • 选择一个之前未选过的下标 i ,并选择一个 严格小于 nums[i] 的质数 p ,从 nums[i] 中减去 p

如果你能通过上述运算使得 nums 成为严格递增数组,则返回 true ;否则返回 false

严格递增数组 中的每个元素都严格大于其前面的元素。

预备知识

这道题如果熟悉质数筛就是简单二分查找问题。

1、质数定义:

  • 质数 / 素数:只能被 1 和本身整除的数,例如 3,5,7;
  • 合数:除了能被 1 和本身整除外,还能被其他数整除的数。也可以理解为由多个不为 1 的质数相乘组成的数,例如 4 = 2 _ 2,6 = 2 _ 3。
  • 1 既不是质数也不是合数。

2、判断 x 是否为质数:

可以枚举 [2,n-1] 的所有数,检查是否是 x 的因数,时间复杂度是 O(n)。事实上并不需要枚举到 n-1:以 n = 17 为例,假设从 2 枚举到 4 都没有发现因子,我们发现 5 也没必要检查。

可以用反证法证明:如果 17 能够被 5 整除,那么一定存在 17 能够被 17/5 的另一个数整除。而由于 17/5 < 5 与前面验证过 [2,4] 不存在因子的前提矛盾。因此 5 不可能是因子。

由此得出,如果存在整除关系 n/x = y,我们只需要检查 x 和 y 之间的较小值。所有的较小值最大不会超过 n 的平方根。所以我们可以缩小检查范围,只检查 [1, O(\sqrt{x})],时间复杂度是 O(\sqrt{x})

3、计算所有小于 n 的质数,有三种算法:

  • 暴力枚举: 枚举每个数,判断它是不是质数,整体时间复杂度是 O(n\sqrt{n})
  • Eratosthenes 埃氏筛: 如果 x 不是质数,则从 x*x 开始将成倍的数字标记为非质数,整体时间复杂度是 O(UlgU);
  • Euler 欧氏线性筛: 标记 x 与 “小于等于 x 的最小质因子的质数” 的乘积为非质数,保证每个合数只被标记最小的质因子标记。

题解一(暴力枚举质数 + 二分查找)

为了获得严格递增数组,显然数组的末位元素的约束是最弱的,甚至是没有约束的。所以我们选择从后往前处理,最后一个数不需要处理。

显然如果靠后的元素尽可能大,那么靠前的元素越容易满足条件。因此,我们可以找到贪心思路:从后往前处理,每处理一个数字时,我们尽可能减去满足题目要求的最小质数,减缓数字变小的速度,给靠前的数字留出空间。

容易发现,“满足题目要求的最小质数” 存在单调性可以用二分查找解决。因此我们的题解分为 2 部分:

  • 1、预处理题目数据范围内的所有质数,即小于 1000 的质数列表,可以用预置知识中的两种;
  • 2、使用二分查找寻找 “满足题目要求的最小质数”。
class Solution {

    companion object {
        // 1000 以内的质数列表
        private val primes = getPrimes(1000)

        // 暴力求质数
        private fun getPrimes(max: Int): IntArray {
            val primes = LinkedList<Int>()
            for (num in 2..max) {
                if (isPrime(num)) primes.add(num)
            }
            return primes.toIntArray()
        }

        // 质数判断
        private fun isPrime(num: Int): Boolean {
            var x = 2
            while (x * x <= num) {
                if (num % x == 0) return false
                x++
            }
            return true
        }
    }

    fun primeSubOperation(nums: IntArray): Boolean {
        for (index in nums.size - 2 downTo 0) {
            if (nums[index] < nums[index + 1]) continue
            // 二分查找:寻找严格小于 nums[index] 且减去后形成递增的最小质数
            var left = 0
            var right = primes.size - 1
            while (left < right) {
                val mid = (left + right) ushr 1
                if (primes[mid] >= nums[index] || nums[index] - primes[mid] < nums[index + 1]) {
                    right = mid
                } else {
                    left = mid + 1
                }
            }
            if (primes[left] >= nums[index] || nums[index] - primes[left] >= nums[index + 1]) return false
            nums[index] -= primes[left]
        }
        return true
    }
}

复杂度分析:

  • 时间复杂度:O(U·\sqrt{U} + nlgU) 其中 nnums 数组的长度,U 是输入数据范围,U 为常数 1000
  • 空间复杂度:O(1) 忽略预处理质数空间,仅使用常数级别空间。

题解二(Eratosthenes 埃氏筛 + 二分查找)

计算质数的部分可以用经典埃氏筛。

筛法求质数的思路是:如果 x 是质数,那么 x 的整数倍 2x、3x 一定不是质数。我们设 isPrime[i] 表示 i 是否为质数,从小开始遍历,如果 i 是质数,则同时将所有倍数标记为合数。事实上,我们不必从 x 开始标记,而是直接从 x*x 开始标记,因为 x * 2, x * 3 已经在之前被标记过,会重复标记。

class Solution {

    companion object {
        // 1000 以内的质数列表
        private val primes = getPrimes(1000)

        // 埃氏筛求质数
        private fun getPrimes(max: Int): IntArray {
            val primes = LinkedList<Int>()
            val isPrime = BooleanArray(max + 1) { true }
            for (num in 2..max) {
                // 检查是否为质数,这里不需要调用 isPrime() 函数判断是否质数,因为它没被小于它的数标记过,那么一定不是合数
                if (!isPrime[num]) continue
                primes.add(num)
                // 标记
                var x = num * num
                while (x <= max) {
                    isPrime[x] = false
                    x += num
                }
            }
            return primes.toIntArray()
        }
    }

    fun primeSubOperation(nums: IntArray): Boolean {
        val n = nums.size
        if (n <= 1) return true
        for (index in n - 2 downTo 0) {
            if (nums[index] < nums[index + 1]) continue
            // 二分查找
            var left = 0
            var right = primes.size - 1
            while (left < right) {
                val mid = (left + right) ushr 1
                if (primes[mid] >= nums[index] || nums[index] - primes[mid] < nums[index + 1]) {
                    right = mid
                } else {
                    left = mid + 1
                }
            }
            if (primes[left] >= nums[index] || nums[index] - primes[left] >= nums[index + 1]) return false
            nums[index] -= primes[left]
        }
        return true
    }
}

复杂度分析:

  • 时间复杂度:O(U·lgU + nlgU) 其中 nnums 数组的长度,U 是输入数据范围,U 为常数 1000
  • 空间复杂度:O(1) 忽略预处理质数空间,仅使用常数级别空间。

题解三(Euler 欧氏线性筛 + 二分查找)

尽管我们从 x * x 开始标记来减少重复标记,但 Eratosthenes 筛选法还是会重复标记一个合数。举个例子,400 这个数不仅会被 2 标记一遍,还会被 5 标记,这就导致了大量的重复计算。

为了避免重复标记,我们使用欧氏筛,它与埃氏筛不同的是:

  • 标记过程不再仅对质数 prime 标记,而是对每个数 x 标记;
  • 不再标记所有 x* x 的整数倍,而是标记 x 与 “小于等于 x 的最小质因子的质数” 的乘积,保证每个合数只被标记最小的质因子标记。
class Solution {

    companion object {
        // 1000 以内的质数列表
        private val primes = getPrimes(1000)

        // 线性筛求质数
        private fun getPrimes(max: Int): IntArray {
            val primes = LinkedList<Int>()
            val isPrime = BooleanArray(max + 1) { true }
            for (num in 2..max) {
                // 检查是否为质数,这里不需要调用 isPrime() 函数判断是否质数,因为它没被小于它的数标记过,那么一定不是合数
                if (isPrime[num]) {
                    primes.add(num)
                }
                // 标记
                for (prime in primes) {
                    if (num * prime > max) break
                    isPrime[num * prime] = false
                    if (num % prime == 0) break
                }
            }
            return primes.toIntArray()
        }
    }

    fun primeSubOperation(nums: IntArray): Boolean {
        val n = nums.size
        if (n <= 1) return true
        for (index in n - 2 downTo 0) {
            if (nums[index] < nums[index + 1]) continue
            // 二分查找
            var left = 0
            var right = primes.size - 1
            while (left < right) {
                val mid = (left + right) ushr 1
                if (primes[mid] >= nums[index] || nums[index] - primes[mid] < nums[index + 1]) {
                    right = mid
                } else {
                    left = mid + 1
                }
            }
            if (primes[left] >= nums[index] || nums[index] - primes[left] >= nums[index + 1]) return false
            nums[index] -= primes[left]
        }
        return true
    }
}

复杂度分析:

  • 时间复杂度:O(U + nlgU) 其中 nnums 数组的长度,U 是输入数据范围,U 为常数 1000
  • 空间复杂度:O(1) 忽略预处理质数空间,仅使用常数级别空间。

相似题目:


2601. 使数组元素全部相等的最少操作次数(Medium)

题目地址

https://leetcode.cn/problems/minimum-operations-to-make-all-array-elements-equal

题目描述

给你一个正整数数组 nums

同时给你一个长度为 m 的整数数组 queries 。第 i 个查询中,你需要将 nums 中所有元素变成 queries[i] 。你可以执行以下操作 任意 次:

  • 将数组里一个元素 增大 或者 减小 1

请你返回一个长度为 m 的数组 **answer ,其中 **answer[i]是将 nums 中所有元素变成 queries[i]最少 操作次数。

注意,每次查询后,数组变回最开始的值。

题解(前缀和 + 二分查找)

一道题很明显有前缀和问题,难点也正是如何把原问题转换为前缀和问题。
如果用暴力解法,我们只需要计算每个元素到 queries[i] 的绝对值之和,单词查询操作的时间复杂度是 O(n),我们不考虑。

为了优化时间复杂度,我们分析数据的特征:

nums = [3,1,6,8], query = 5 为例,小于 5 的 3 和 1 需要增大才能变为 5,大于 5 的 6 和 8 需要减小才能变为 5。因此我们尝试将数组分为两部分 [3,1, | 6,8],需要执行加法的次数为 [+2,+4, | -1,-3]。

然而,我们不需要累加这 n 个差值的绝对值,而是使用前缀和在 O(1) 时间内快速计算。如图所示,小于 5 的部分可以用 “小于 5 的数字个数 _ 5” - “小于 5 的数字之和” 获得,大于 5 的部分可以用 “大于 5 的数字之和” - “大于 5 的数字个数 _ 5” 计算:

而 “小于 5 的数字之和” 与 “大于 5 的数字之和” 是明显的区间求和,可以用前缀和数组在 O(1) 时间复杂度解决。至此,我们成功将原问题转换为前缀和问题。

那么,剩下的问题是如何将数组拆分为两部分?

我们发现对于单次查询来说,我们可以使用快速选择算法在 O(lgn) 时间内找到。但是题目不仅只有一次,所以我们可以先对整个数组排序,再用二分查找找到枚举的分割点。

最后一个细节,由于数组的输入范围很大,所以前缀和数组要定义为 long 数组类型。

class Solution {
    fun minOperations(nums: IntArray, queries: IntArray): List<Long> {
        val n = nums.size
        // 排序
        nums.sort()
        // 前缀和
        val preSums = LongArray(n + 1)
        for (index in nums.indices) {
            preSums[index + 1] = nums[index] + preSums[index]
        }
        val ret = LinkedList<Long>()
        for (target in queries) {
            // 二分查找寻找大于等于 target 的第一个元素
            var left = 0
            var right = n - 1
            while (left < right) {
                val mid = (left + right) ushr 1
                if (nums[mid] < target) {
                    left = mid + 1
                } else {
                    right = mid
                }
            }
            val index = if (nums[left] >= target) left - 1 else left
            val leftSum = 1L * (index + 1) * target - preSums[index + 1]
            val rightSum = preSums[n] - preSums[index + 1] - 1L * (n - 1 - index) * target
            ret.add(leftSum + rightSum)
        }
        return ret
    }
}

复杂度分析:

  • 时间复杂度:O(nlgn + qlgn) 其中 nnums 数组的长度,qqueries 数组的长度。总共会执行 q 次查询操作,每次查询操作的时间复杂度是 O(lgn)
  • 空间复杂度:O(n) 前缀和数组空间。

近期周赛前缀和问题:


2602. 收集树中金币(Hard)

题目地址

https://leetcode.cn/problems/collect-coins-in-a-tree/

题目描述

给你一个 n 个节点的无向无根树,节点编号从 0n - 1 。给你整数 n 和一个长度为 n - 1 的二维整数数组 edges ,其中 edges[i] = [ai, bi] 表示树中节点 aibi 之间有一条边。再给你一个长度为 n 的数组 coins ,其中 coins[i] 可能为 0 也可能为 11 表示节点 i 处有一个金币。

一开始,你需要选择树中任意一个节点出发。你可以执行下述操作任意次:

  • 收集距离当前节点距离为 2 以内的所有金币,或者
  • 移动到树中一个相邻节点。

你需要收集树中所有的金币,并且回到出发节点,请你返回最少经过的边数。

如果你多次经过一条边,每一次经过都会给答案加一。

预备知识

  • 拓扑排序:

给定一个包含 n 个节点的有向图 G,我们给出它的节点编号的一种排列,如果满足: 对于图 G 中的任意一条有向边 (u,v),u 在排列中都出现在 v 的前面。 那么称该排列是图 G 的「拓扑排序」。

  • 拓扑排序的实现思路:

拓扑排序的常规实现是 Kahn 拓扑排序算法,基于 BFS 搜索和贪心思想:每次从图中删除没有前驱的节点(入度为 0),并修改它指向的节点的入度,直到 BFS 队列为空结束。

题解(拓扑排序 + 模拟)

  • 观察示例 1:从节点 2 出发,收集节点 0 处的金币,移动到节点 3 ,收集节点 5 处的金币,然后移动回节点 2。
  • 观察示例 2:从节点 0 出发,收集节点 4 和 3 处的金币,移动到节点 2 处,收集节点 7 处的金币,移动回节点 0。

结合题目规则(收集距离当前节点距离为 2 以内的所有金币)和这 2 个示例分析: 最优路径必然不需要触达图的边缘,而只需要在图的核心部分来回试探 (如示例 1 的节点 2 和节点 3,示例 2 的节点 0 和节点 2)。

  • 1、访问无金币的子树没有意义,我们将整个子树剪枝;
  • 2、叶子节点和距离叶子节点距离为 1 的节点都没有必要访问,我们将这些点剪枝;

剩下的点就是必须经过的核心点。再结合题目规则(你需要收集树中所有的金币,并且回到出发节点),且题目保证输入数据是合法的树,因此答案正好就是剩下部分边的数目 * 2。

class Solution {
    fun collectTheCoins(coins: IntArray, edges: Array<IntArray>): Int {
        val n = coins.size
        // 入度表
        val inDegrees = IntArray(n)
        // 领接表
        val graph = HashMap<Int, MutableList<Int>>()
        for (edge in edges) {
            graph.getOrPut(edge[0]) { LinkedList<Int>() }.add(edge[1])
            graph.getOrPut(edge[1]) { LinkedList<Int>() }.add(edge[0])
            inDegrees[edge[0]]++
            inDegrees[edge[1]]++
        }
        // 剩余的边
        var left_edge = edges.size // n - 1
        // 1、拓扑排序剪枝无金币子树
        val queue = LinkedList<Int>()
        for (node in 0 until n) {
            // 题目是无向图,所以叶子结点的入度也是 1
            if (inDegrees[node] == 1 && coins[node] == 0) {
                queue.offer(node)
            }
        }
        while (!queue.isEmpty()) {
            // 删除叶子结点
            val node = queue.poll()
            left_edge -= 1
            // 修改相邻节点
            for (edge in graph[node]!!) {
                if (--inDegrees[edge] == 1 && coins[edge] == 0) queue.offer(edge)
            }
        }
        // 2、拓扑排序剪枝与叶子结点距离不大于 2 的节点(裁剪 2 层)
        // 叶子节点
        for (node in 0 until n) {
            if (inDegrees[node] == 1 && coins[node] == 1) {
                queue.offer(node)
            }
        }
        for (node in queue) {
            // 2.1 删除叶子结点
            left_edge -= 1
            // 2.2 删除到叶子结点距离为 1 的节点
            for (edge in graph[node]!!) {
                if (--inDegrees[edge] == 1) left_edge -= 1
            }
        }
        // println(inDegrees.joinToString())
        // coins=[0,0],edges=[[0,1]] 会减去所有节点导致出现负数
        return Math.max(left_edge * 2, 0)
    }
}

复杂度分析:

  • 时间复杂度:O(n) 其中 ncoins 数组的长度;
  • 空间复杂度:O(n)

相似题目:


有用请支持,你们的支持是我持续分享有价值内容的动力。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,772评论 6 477
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,458评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,610评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,640评论 1 276
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,657评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,590评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,962评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,631评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,870评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,611评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,704评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,386评论 4 319
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,969评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,944评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,179评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 44,742评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,440评论 2 342

推荐阅读更多精彩内容