Incremental network quantization

Approach

We present INQ which incorporates three interdependent operations: weight partition, groupwise quantization and re-training. Weight partition is to divide the weights in each layer of a pre-trained full-precision CNN model into two disjoint groups which play complementary roles in our INQ. The weights in the first group are responsible for forming a low-precision base for the original model. The weights in the second group adapt to compensate for the loss in model accuracy, thus they are the ones to be re-trained. Once the first run of the quantization and retraining operations is finished, all the three operations are further conducted on the second weight group in an iterative manner, until all the weights are converted to be either powers of two or zero, acting as an incremental network quantization and accuracy enhancement procedure.

Experiment

References:
INCREMENTAL NETWORK QUANTIZATION: TOWARDS LOSSLESS CNNS WITH LOW-PRECISION WEIGHTS, Aojun Zhou, 2017, ICLR

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

推荐阅读更多精彩内容

  • 他愿意就是可以的 这几天,难得烧菜做饭。 工作忙碌时候,不肯动手。总以为是浪费时间,何必呢!什么时候做菜都成了...
    feiniaoyuyu313阅读 224评论 0 0
  • 2017.10.23,王勇老师带着陈丽君一起到了长医校门口,开始了创业之路的谈论。说实话,我还是打不起精神...
    瑞儿姑娘阅读 270评论 0 0
  • 文字稿已出,电子稿还没跟上。先打卡,不知可否
    柚丠丠阅读 162评论 1 1
  • 最美的微笑 在生命最危难的时刻 在死神手中的时刻 像花儿一样 透着花儿的清香 悄然开放 这...
    不错嘛我的天梭表阅读 240评论 0 0