机器学习面试之偏差方差

在机器学习的面试中,能不能讲清楚偏差方差,经常被用来考察面试者的理论基础。偏差方差看似很简单,但真要彻底地说明白,却有一定难度。比如,为什么KNN算法在增大k时,偏差会变大,但RF增大树的数目时偏差却保持不变,GBDT在增大树的数目时偏差却又能变小。本文的目的就是希望能对偏差方差有一个科学的解读,欢迎大家多多交流。

1、引子

假设我们有一个回归问题,我们搞到一批训练数据D,然后选择了一个模型M,并用数据D将M训练出来,记作Mt,这里我们故意把模型M与训练出的模型Mt区分开,是为了后面叙述时概念上的清晰。现在,我们怎么评价这个模型的好坏呢?

你可能会不屑地说,这么简单的问题还用问吗,当然是用test集来测试啊。


哈哈!你上当了!


因为我并没有说明是评价模型M的好坏还是模型Mt的好坏!这二者有什么区别呢?

我们都知道,模型M代表的是一个函数空间,比如模型y=wx+b,若x,y都是实数,w,b为实数参数,则该模型就代表了平面上所有的直线,这所有的直线就是一个函数空间。

同理,y=ax^2+bx+c代表的就是平面上所有的二次曲线,所有的二次曲线组成一个函数空间。当然,所有的直线此时也是二次曲线的特例。

回到上面的问题,Mt实际上是用数据D找到的M代表的函数空间中的一个具体的函数。这话有点绕,不过还是不难理解的。

Mt的表现好坏不能完整地代表M的好坏。

上面这句话有很多内涵,我们一点一点来说明。

2、什么是M的好坏?

以上面的一次函数和二次函数为例,当我们说二次函数比一次函数更好时,我们潜在的含义是说,对于某个我们正要解决的机器学习问题来说,二次函数总体上比一次函数表现更好,我们是在函数空间的层次上来比较的。

而且,还是针对一个具体的机器学习问题来比较的,因为对于不同的机器学习问题,二者哪个更好是不一定的。

Note:在下文中,可以把机器学习问题默想成回归问题,这样便于理解。

这里再次强调,当我们说模型好坏时,隐含有两个含义:

1,比较的是整个函数空间

2,针对某个具体机器学习问题比较


3,怎么比较M的好坏?

我们可以这样做:

1,找一条不变的万能测试样本

在这个具体的机器学习问题中找一条样本x,它的标签为y。在后续的所有训练中都用这条样本做测试集,永远不用作训练集。

2,在测试样本上观察Mt的表现,假设Mt在样本x上的预测值为yt,则y-yt可用来评价Mt的表现好坏。

3,找另外一个训练集D1,训练出Mt1,在测试样本上测试得到yt1,进而得到误差y-yt1,

4,重复第3步多次,直到得到N个具体的模型,和N个yt,N个y-yt。

5,当N足够大时,我们可以这样来评测M的好坏,首先看N个yt的均值ytmean是否等于y,其次,看N个yt相对均值ytmean的方差有多大。

显然,若ytmean=y,说明M学习能力是够的,也就是说,当N趋向无穷大时,N个Mt对x预测的均值能无限接近y。

很多人会有种错觉,感觉任何M都能达到上面的效果,实际上,不是每一个M都有这样的能力的,举个极端的例子,我们假设M1的函数空间中只有一个函数,且对于任何样本的预测值都恒等于y+1,则无论N多大,ytmean都会比y大1的。我们称M1由于学习能力不够所造成的对x的预测误差叫做偏差。

其次,N个yt相对均值ytmean的方差有多大也能从另一个方面揭示M的好坏,举个例子,假设我们有M1,M2两个模型,当N无穷大时,都能使得ytmean等于y。但是M1的预测值是这样分布的(下面圆点代表一个个的预测值)

.....ytmean.....

M2的预测值是这样分布的

.  .   .  .ytmean.  .   .  .

显然,我们会觉得M1比M2更好。你可能会想,N足够大时,二者都能准确地均值到y,这就够了,没必要再比较它们的预测值相对均值的方差。

这样的观点错误的地方是:实践中,我们并不能抽样出D1,D2,D3.......DN个训练集,往往只有一份训练集D,这种情况下,显然,用M1比用M2更有把握得到更小的误差。

4、举例子来说明偏差方差

假设模型是一个射击学习者,D1,D2直到DN就是N个独立的训练计划。

如果一个学习者是正常人,一个眼睛斜视,则可以想见,斜视者无论参加多少训练计划,都不会打中靶心,问题不在训练计划够不够好,而在他的先天缺陷。这就是模型偏差产生的原因,学习能力不够。正常人参加N个训练计划后,虽然也不能保证打中靶心,但随着N的增大,会越来越接近靶心。

假设还有一个超级学习者,他的学习能力特别强,参加训练计划D1时,他不仅学会了瞄准靶心,还敏感地捕捉到了训练时的风速,光线,并据此调整了瞄准的方向,此时,他的训练成绩会很好。

但是,当参加测试时的光线,风速肯定与他训练时是不一样的,他仍然按照训练时学来的瞄准方法去打靶,肯定是打不好。这样产生的误差就是方差。这叫做聪明反被聪明误。

总结一下:学习能力不行造成的误差是偏差,学习能力太强造成的误差是方差。


5、权衡偏差方差

当我们只有一份训练数据D时,我们选的M若太强,好比射手考虑太多风速,光线等因素,学出来的模型Mt在测试样本上表现肯定不好,若选择的M太挫,比如是斜视,也无论如何在测试的样本上表现也不会好。所以,最好的M就是学习能力刚刚好的射手,它能够刚刚好学习到瞄准的基本办法,又不会画蛇添足地学习太多细枝末节的东西。


6、回答本文最初的问题

对于KNN算法,k值越大,表示模型的学习能力越弱,因为k越大,它越倾向于从“面”上考虑做出判断,而不是具体地考虑一个样本 近身的情况来做出判断,所以,它的偏差会越来越大。

对于RF,我们实际上是部分实现了多次训练取均值的效果,每次训练得到的树都是一个很强的学习者,每一个的方差都比较大,但综合起来就会比较小。好比一个很强的学习者学习时,刮着西风,它会据此调整自己的瞄准方法,另一个很强的学习者学习时刮着东风,(西风、东风可以理解为不同训练集中的噪声)它也会据此调整自己的瞄准方法,在测试样本时,一个误差向西,一个误差向东,刚好起到互相抵消的作用,所以方差会比较小。但是由于每棵树的偏差都差不多,所以,我们取平均时,偏差不会怎么变化。

为什么说是部分实现了多次训练取均值的效果而不是全部呢?因为我们在训练各棵树时,是通过抽样样本集来实现多次训练的,不同的训练集中不可避免地会有重合的情况,此时,就不能认为是独立的多次训练了,各个训练得到的树之间的方差会产生一定的相关性,训练集中重合的样本越多,则两棵树之间的方差的相关性越强,就越难达成方差互相抵消的效果。

对于GBDT,N棵树之间根本就不是一种多次训练取均值的关系,而是N棵树组成了相关关联,层层递进的超级学习者,可想而知,它的方差一定是比较大的。但由于它的学习能力比较强,所以,它的偏差是很小的,而且树的棵树越多,学习能力就越强,偏差就越小。也就是说,只要学习次数够多,预测的均值会无限接近于目标。简单讲就是GBDT的N棵树实际上是一个有机关联的模型,不能认为是N个模型。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,001评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,210评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,874评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,001评论 1 291
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,022评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,005评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,929评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,742评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,193评论 1 309
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,427评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,583评论 1 346
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,305评论 5 342
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,911评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,564评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,731评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,581评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,478评论 2 352

推荐阅读更多精彩内容