本笔记为参加阿里云“天池龙珠计划 机器学习训练营”所做的学习记录,代码及知识内容均来源于训练营,本人稍作扩充。
具体活动内容请移步阿里云天池龙珠计划; 同时感谢公众号“机器学习炼丹术”的介绍、推广和组织。
1 逻辑回归的介绍和应用
1.1 逻辑回归的介绍
逻辑回归(Logistic regression,简称LR)虽然其中带有"回归"两个字,但逻辑回归其实是一个分类模型,并且广泛应用于各个领域之中。虽然现在深度学习相对于这些传统方法更为火热,但实则这些传统方法由于其独特的优势依然广泛应用于各个领域中。
而对于逻辑回归而且,最为突出的两点就是其模型简单和模型的可解释性强。
逻辑回归模型的优劣势:
- 优点:实现简单,易于理解和实现;计算代价不高,速度很快,存储资源低;
- 缺点:容易欠拟合,分类精度可能不高
1.1 逻辑回归的应用
逻辑回归模型广泛用于各个领域,包括机器学习,大多数医学领域和社会科学。例如,最初由Boyd 等人开发的创伤和损伤严重度评分(TRISS)被广泛用于预测受伤患者的死亡率,使用逻辑回归 基于观察到的患者特征(年龄,性别,体重指数,各种血液检查的结果等)分析预测发生特定疾病(例如糖尿病,冠心病)的风险。逻辑回归模型也用于预测在给定的过程中,系统或产品的故障的可能性。还用于市场营销应用程序,例如预测客户购买产品或中止订购的倾向等。在经济学中它可以用来预测一个人选择进入劳动力市场的可能性,而商业应用则可以用来预测房主拖欠抵押贷款的可能性。条件随机字段是逻辑回归到顺序数据的扩展,用于自然语言处理。
逻辑回归模型现在同样是很多分类算法的基础组件,比如 分类任务中基于GBDT算法+LR逻辑回归实现的信用卡交易反欺诈,CTR(点击通过率)预估等,其好处在于输出值自然地落在0到1之间,并且有概率意义。模型清晰,有对应的概率学理论基础。它拟合出来的参数就代表了每一个特征(feature)对结果的影响。也是一个理解数据的好工具。但同时由于其本质上是一个线性的分类器,所以不能应对较为复杂的数据情况。很多时候我们也会拿逻辑回归模型去做一些任务尝试的基线(基础水平)。
说了这些逻辑回归的概念和应用,大家应该已经对其有所期待了吧,那么我们现在开始吧!!!
2 学习目标
- 了解 逻辑回归 的理论
- 掌握 逻辑回归 的 sklearn 函数调用使用并将其运用到鸢尾花数据集预测
3 代码流程
Part1 Demo实践
- Step1:库函数导入
- Step2:模型训练
- Step3:模型参数查看
- Step4:数据和模型可视化
- Step5:模型预测
Part2 基于鸢尾花(iris)数据集的逻辑回归分类实践
- Step1:库函数导入
- Step2:数据读取/载入
- Step3:数据信息简单查看
- Step4:可视化描述
- Step5:利用 逻辑回归模型 在二分类上 进行训练和预测
- Step5:利用 逻辑回归模型 在三分类(多分类)上 进行训练和预测