python之线程

一、线程概念的引入

进程有很多优点,它提供了多道编程,让我们感觉我们每个人都拥有自己的CPU和其他资源,可以提高计算机的利用率。很多人就不理解了,既然进程这么优秀,为什么还要线程呢?其实,仔细观察就会发现进程还是有很多缺陷的,主要体现在两点上:
  1. 进程只能在一个时间干一件事,如果想同时干两件事或多件事,进程就无能为力了。
  2. 进程在执行的过程中如果阻塞,例如等待输入,整个进程就会挂起,即使进程中有些工作不依赖于输入的数据,也将无法执行。

如果这两个缺点理解比较困难的话,举个现实的例子也许你就清楚了:
  如果把我们上课的过程看成一个进程的话,那么我们要做的是耳朵听老师讲课,手上还要记笔记,脑子还要思考问题,这样才能高效的完成听课的任务。而如果只提供进程这个机制的话,上面这三件事将不能同时执行,同一时间只能做一件事,听的时候就不能记笔记,也不能用脑子思考,这是其一;如果老师在黑板上写演算过程,我们开始记笔记,而老师突然有一步推不下去了,阻塞住了,他在那边思考着,而我们呢,也不能干其他事,即使你想趁此时思考一下刚才没听懂的一个问题都不行,这是其二。
.
  现在你应该明白了进程的缺陷了,而解决的办法很简单,我们完全可以让听、写、思三个独立的过程,并行起来,这样很明显可以提高听课的效率。而实际的操作系统中,也同样引入了这种类似的机制——线程。

线程的出现

60年代,在OS中能拥有资源和独立运行的基本单位是进程,然而随着计算机技术的发展,进程出现了很多弊端,一是由于进程是资源拥有者,创建、撤消与切换存在较大的时空开销,因此需要引入轻型进程;二是由于对称多处理机(SMP)出现,可以满足多个运行单位,而多个进程并行开销过大。
  因此在80年代,出现了能独立运行的基本单位——线程(Threads)。
  注意:进程是资源分配的最小单位,线程是CPU调度的最小单位。每一个进程中至少有一个线程。

二、线程的全面认识

线程的特点

在多线程的操作系统中,通常是在一个进程中包括多个线程,每个线程都是作为利用CPU的基本单位,是花费最小开销的实体。线程具有以下属性。
  1)轻型实体
  线程中的实体基本上不拥有系统资源,只是有一点必不可少的、能保证独立运行的资源。
  线程的实体包括程序、数据和TCB。线程是动态概念,它的动态特性由线程控制块TCB(Thread Control Block)描述。TCB包括以下信息:
    (1)线程状态。
    (2)当线程不运行时,被保存的现场资源。
    (3)一组执行堆栈。
    (4)存放每个线程的局部变量主存区。
    (5)访问同一个进程中的主存和其它资源。
用于指示被执行指令序列的程序计数器、保留局部变量、少数状态参数和返回地址等的一组寄存器和堆栈。
  2)独立调度和分派的基本单位。
  在多线程OS中,线程是能独立运行的基本单位,因而也是独立调度和分派的基本单位。由于线程很“轻”,故线程的切换非常迅速且开销小(在同一进程中的)。
  3)共享进程资源。
  线程在同一进程中的各个线程,都可以共享该进程所拥有的资源,这首先表现在:所有线程都具有相同的进程id,这意味着,线程可以访问该进程的每一个内存资源;此外,还可以访问进程所拥有的已打开文件、定时器、信号量机构等。由于同一个进程内的线程共享内存和文件,所以线程之间互相通信不必调用内核。
  4)可并发执行。
  在一个进程中的多个线程之间,可以并发执行,甚至允许在一个进程中所有线程都能并发执行;同样,不同进程中的线程也能并发执行,充分利用和发挥了处理机与外围设备并行工作的能力。*

进程和线程的关系

image.png

线程与进程的区别可以归纳为以下4点:
  1)地址空间和其它资源(如打开文件):进程间相互独立,同一进程的各线程间共享。某进程内的线程在其它进程不可见。
  2)通信:进程间通信IPC,线程间可以直接读写进程数据段(如全局变量)来进行通信——需要进程同步和互斥手段的辅助,以保证数据的一致性。
  3)调度和切换:线程上下文切换比进程上下文切换要快得多。
  4)在多线程操作系统中,进程不是一个可执行的实体。

使用线程的实际场景

线程的实际场景.png

开启一个字处理软件进程,该进程肯定需要办不止一件事情,比如监听键盘输入,处理文字,定时自动将文字保存到硬盘,这三个任务操作的都是同一块数据,因而不能用多进程。只能在一个进程里并发地开启三个线程,如果是单线程,那就只能是,键盘输入时,不能处理文字和自动保存,自动保存时又不能输入和处理文字。

内存中的线程

内存中的线程.png

  多个线程共享同一个进程的地址空间中的资源,是对一台计算机上多个进程的模拟,有时也称线程为轻量级的进程。
  而对一台计算机上多个进程,则共享物理内存、磁盘、打印机等其他物理资源。多线程的运行也多进程的运行类似,是cpu在多个线程之间的快速切换。
  不同的进程之间是充满敌意的,彼此是抢占、竞争cpu的关系,如果迅雷会和QQ抢资源。而同一个进程是由一个程序员的程序创建,所以同一进程内的线程是合作关系,一个线程可以访问另外一个线程的内存地址,大家都是共享的,一个线程干死了另外一个线程的内存,那纯属程序员脑子有问题。
  类似于进程,每个线程也有自己的堆栈,不同于进程,线程库无法利用时钟中断强制线程让出CPU,可以调用thread_yield运行线程自动放弃cpu,让另外一个线程运行。
  线程通常是有益的,但是带来了不小程序设计难度,线程的问题是:
  1. 父进程有多个线程,那么开启的子线程是否需要同样多的线程
  2. 在同一个进程中,如果一个线程关闭了文件,而另外一个线程正准备往该文件内写内容呢?
  因此,在多线程的代码中,需要更多的心思来设计程序的逻辑、保护程序的数据。

用户级线程和内核级线程

线程的实现可以分为两类:用户级线程(User-Level Thread)内核线线程(Kernel-Level Thread),后者又称为内核支持的线程或轻量级进程。在多线程操作系统中,各个系统的实现方式并不相同,在有的系统中实现了用户级线程,有的系统中实现了内核级线程。

用户级线程
  内核的切换由用户态程序自己控制内核切换,不需要内核干涉,少了进出内核态的消耗,但不能很好的利用多核Cpu。

用户级线程.png

  在用户空间模拟操作系统对进程的调度,来调用一个进程中的线程,每个进程中都会有一个运行时系统,用来调度线程。此时当该进程获取cpu时,进程内再调度出一个线程去执行,同一时刻只有一个线程执行。

内核级线程
   内核级线程:切换由内核控制,当线程进行切换的时候,由用户态转化为内核态。切换完毕要从内核态返回用户态;可以很好的利用smp,即利用多核cpu。windows线程就是这样的。

内核级线程.png

三、线程和python

全局解释器锁GIL

Python代码的执行由Python虚拟机(也叫解释器主循环)来控制。Python在设计之初就考虑到要在主循环中,同时只有一个线程在执行。虽然 Python 解释器中可以“运行”多个线程,但在任意时刻只有一个线程在解释器中运行。
  对Python虚拟机的访问由全局解释器锁(GIL)来控制,正是这个锁能保证同一时刻只有一个线程在运行。
  在多线程环境中,Python 虚拟机按以下方式执行:
  a、设置 GIL;
  b、切换到一个线程去运行;
  c、运行指定数量的字节码指令或者线程主动让出控制(可以调用 time.sleep(0));
  d、把线程设置为睡眠状态;
  e、解锁 GIL;
  d、再次重复以上所有步骤。
  在调用外部代码(如 C/C++扩展函数)的时候,GIL将会被锁定,直到这个函数结束为止(由于在这期间没有Python的字节码被运行,所以不会做线程切换)编写扩展的程序员可以主动解锁GIL。

python线程模块的选择

Python提供了几个用于多线程编程的模块,包括thread、threadingQueue等。thread和threading模块允许程序员创建和管理线程。thread模块提供了基本的线程和锁的支持,threading提供了更高级别、功能更强的线程管理的功能。Queue模块允许用户创建一个可以用于多个线程之间共享数据的队列数据结构
  避免使用thread模块,因为更高级别的threading模块更为先进,对线程的支持更为完善,而且使用thread模块里的属性有可能会与threading出现冲突;其次低级别的thread模块的同步原语很少(实际上只有一个),而threading模块则有很多;再者,thread模块中当主线程结束时,所有的线程都会被强制结束掉,没有警告也不会有正常的清除工作,至少threading模块能确保重要的子线程退出后进程才退出。
  thread模块不支持守护线程,当主线程退出时,所有的子线程不论它们是否还在工作,都会被强行退出。而threading模块支持守护线程,守护线程一般是一个等待客户请求的服务器,如果没有客户提出请求它就在那等着,如果设定一个线程为守护线程,就表示这个线程是不重要的,在进程退出的时候,不用等待这个线程退出。

线程的创建Threading.Thread类

multiprocessing模块的完全模仿了threading模块的接口,二者在使用层面,有很大的相似性
线程的详细了解请看官方文档:https://docs.python.org/3/library/threading.html?highlight=threading#

线程的创建同进程一样,有直接实例化创建继承Thread类两种方式:

# 直接实例化创建
from threading import Thread

def sayhi(name):
    print('%s say hello' % name)

if __name__ == '__main__':
    t = Thread(target=sayhi, args=('egon',))
    t.start()
    print('主线程')

=======================================================
# 继承Thread类创建方式
from threading import Thread

class Sayhi(Thread):
    def __init__(self, name):
        super().__init__()
        self.name = name

    def run(self):
        print('%s say hello' % self.name)

if __name__ == '__main__':
    t = Sayhi('egon')
    t.start()
    print('主线程')

Thread方法介绍

Thread实例对象的方法
  isAlive(): 返回线程是否活动的。
  getName(): 返回线程名。
  setName(): 设置线程名。

threading模块提供的一些方法:
  threading.currentThread():返回当前的线程变量。
  threading.enumerate():返回一个包含正在运行的线程的list。正在运行指线程启动后、结束前,不包括启动前和终止后的线程。
  threading.activeCount(): 返回正在运行的线程数量,与len(threading.enumerate())有相同的结果。

多进程与多线程的比较

pid的比较
  多线程ID的比较:在主进程下开启多个线程,每个线程都跟主进程的pid一样.
  多进程ID的比较:开多个进程,每个进程都有不同的pid

线程进程开启效率的比较
  但比较两个的开启效率从两者的穿件代码可以看出,线程的开启效率要比进程高!!!

内存数据的共享问题
  进程之间的内存空间是隔离开来的,不同进程之间数据隔离保证了数据的安全。
  同一进程内的线程之间共享进程内的数据

守护线程

无论是进程还是线程,都遵循:守护xx会等待主xx运行完毕后被销毁。需要强调的是:运行完毕并非终止运行
  1.对主进程来说,运行完毕指的是主进程代码运行完毕。
  2.对主线程来说,运行完毕指的是主线程所在的进程内所有非守护线程统统运行完毕,主线程才算运行完毕

详细解释
主进程在其代码结束后就已经算运行完毕了(守护进程在此时就被回收),然后主进程会一直等非守护的子进程都运行完毕后回收子进程的资源(否则会产生僵尸进程),才会结束,
  主线程在其他非守护线程运行完毕后才算运行完毕(守护线程在此时就被回收)。因为主线程的结束意味着进程的结束,进程整体的资源都将被回收,而进程必须保证非守护线程都运行完毕后才能结束。

from threading import Thread
import time
def foo():
    print(123)
    time.sleep(3)
    print("end123")

def bar():
    print(456)
    time.sleep(1)
    print("end456")

t1=Thread(target=foo)
t2=Thread(target=bar)

t1.daemon=True
#t1.setDeamon(True)
t1.start()
t2.start()
print("main-------")

同步锁

多线程的运行原本是并行的,但多线程中数据是共享的,为了保证共享数据的安全,我们需要确保特定时间内只有一个线程修改数据,所以需要对线程处理数据处加锁。加锁让本来并行变成了部分串行。

from threading import Thread,Lock
import os,time
def work():
    global n
    lock.acquire()
    temp=n
    time.sleep(0.1)
    n=temp-1
    lock.release()
if __name__ == '__main__':
    lock=Lock()
    n=100
    l=[]
    for i in range(100):
        p=Thread(target=work)
        l.append(p)
        p.start()
    for p in l:
        p.join()
    print(n) #结果肯定为0,由原来的并发执行变成串行,牺牲了执行效率保证了数据安全

有的朋友可能有疑问:既然加锁会让运行变成串行,那么我在start之后立即使用join,就不用加锁了啊,也是串行的效果啊!!!
  没错:在start之后立刻使用jion,肯定会将100个任务的执行变成串行,毫无疑问,最终n的结果也肯定是0,是安全的,但问题是:start后立即join:任务内的所有代码都是串行执行的,而加锁,只是加锁的部分即修改共享数据的部分是串行的。单从保证数据安全方面,二者都可以实现,但很明显是加锁的效率更高.

死锁与递归锁

同进程的死锁,线程中就是threading.RLock

信号量(锁+计数器)

同进程的一样,Semaphore管理一个内置的计数器,
每当调用acquire()时内置计数器-1;调用release() 时内置计数器+1;
计数器不能小于0;当计数器为0时,acquire()将阻塞线程直到其他线程调用release()。

事件(略)

略。。。。。。。。。。。。。。。

条件

使得线程等待,只有满足某条件时,才释放n个线程

解释:Python提供的Condition对象提供了对复杂线程同步问题的支持。Condition被称为条件变量,除了提供与Lock类似的acquire和release方法外,还提供了wait和notify方法。线程首先acquire一个条件变量,然后判断一些条件。如果条件不满足则wait;如果条件满足,进行一些处理改变条件后,通过notify方法通知其他线程,其他处于wait状态的线程接到通知后会重新判断条件。不断的重复这一过程,从而解决复杂的同步问题。

import threading

def run(n):
    con.acquire()
    con.wait()
    print("run the thread: %s" % n)
    con.release()

if __name__ == '__main__':

    con = threading.Condition()
    for i in range(10):
        t = threading.Thread(target=run, args=(i,))
        t.start()

    while True:
        inp = input('>>>')
        if inp == 'q':
            break
        con.acquire()
        con.notify(int(inp))
        con.release()
        print('****')

定时器

定时器,指定n秒后执行某个操作


定时器

线程队列

三种queue队列:使用import queue,用法与进程Queue一样
1.queue.Queue(maxsize=0) # first in first out
2.queue.LifoQueue(maxsize=0) #last in fisrt out
3.queue.PriorityQueue(maxsize=0) #存储数据时可设置优先级的队列

优先级队列

四、Python标准模块--concurrent.futures

更多相关知识请参考官方文档:https://docs.python.org/dev/library/concurrent.futures.html

介绍
  concurrent.futures模块提供了高度封装的异步调用接口.。
  ThreadPoolExecutor:线程池,提供异步调用
  ProcessPoolExecutor: 进程池,提供异步调用
基本方法
  submit(fn, args, *kwargs):异步提交任务
  map(func, iterables, timeout=None, chunksize=1):取代for循环submit的操作
  shutdown(wait=True):相当于进程池的pool.close()+pool.join()操作wait=True,等待池内所有任务执行完毕回收完资源后才继续。wait=False,立即返回,并不会等待池内的任务执行完毕。但不管wait参数为何值,整个程序都会等到所有任务执行完毕。
submit和map必须在shutdown之前
  result(timeout=None):取得结果
  add_done_callback(fn):回调函数

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 219,589评论 6 508
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,615评论 3 396
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 165,933评论 0 356
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,976评论 1 295
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,999评论 6 393
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,775评论 1 307
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,474评论 3 420
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,359评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,854评论 1 317
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 38,007评论 3 338
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,146评论 1 351
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,826评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,484评论 3 331
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,029评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,153评论 1 272
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,420评论 3 373
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,107评论 2 356

推荐阅读更多精彩内容