JIT(上):Tensorflow如何实现即时编译?

Tensorflow的JIT(just-in-time)是指在运行@tf.function修饰的python函数时,由jittf2xlaXLA一起完成一系列如子图构造、子图优化、图编译和图执行等操作。编译后的可执行程序--executable会存放到cache中,供再次调用时直接获取执行。JIT的好处在开篇已经讲过了,这里不再赘述。

https://sketch2sky.com/2019/09/24/tensorflow-jit-%E6%8A%80%E6%9C%AF%E8%AF%A6%E8%A7%A3

JIT的流程可以概括为:Tensorflow子图构造/优化,graph -> HLO,编译/执行,合并计算结果到Tensorflow图这四部分。本文只涉及图编译和图执行。

函数中ops在子图构造阶段被包裹进一个cluster node,并替换成xla_compilexla_run这两op,而XlaCompileOpXlaRunOp就是它们的OpKernel,分别用于图编译和执行。

XlaCompileOp通过XlaCompilationCache获取或编译executable,并将其封装成XlaExecutableClosure,并缓存在XlaExecutableClosureStoreXlaRunOp用从XlaCompileOp传递来的key在cache中查找并执行executable。

Signature

从编译流程图可以看到,XLA的编译结果会缓存到XlaCompilationCache,后续调用可以根据signature在cache中查找executable。

函数的signature是由BuildSignature(function, args)根据函数和arguments生成的。即使是同一个函数,只要input tensors不同,signature也会不一样,这就是power()被编译两次的原因:第三次函数调用时,由于无法通过signature在cache中找到executable而触发编译。

signature表示唯一的计算图:只要函数中的ops序列和arguments(type/shape)是确定的,那么计算图也是确定的。

Graph -> HLO

编译之前需要通过tf2xla将图转换成XLA支持的语言HLO。tf2xla为每个Tensorflow op创建了生成HLO的XlaOp,因此,只要执行该Tensorflow子图,就可以生成具有相同的拓扑排序的HLO -- XlaComputation

HLO -> Executable

XlaComputation(HLO)可以认为是一个运行在device上的纯函数,它的input/output会伴随着host-to-device(H2D)和device-to-host(D2H)的数据传输。

我们知道,Tensorflow图中的input tensor有两种:tf.Placeholdertf.Variable,前者每个step都会将新data发送到device,而后者是模型参数,它们会常驻内存,只在store/load checkpoint才会有H2D/D2H。

而纯函数的定义是:

  • 除了中间计算结果以外的所有tensors都要以arguments的形式传入函数。因此,不管是tensor还是variable都在函数的参数列表中。
  • 所有的输出结果都是通过返回值(ROOT)返回。模型训练的结果是那些经过优化器更新后的参数(variable),它们会作为HLO的返回值。

不管是input还是output,虽然variable和其他argument一样存在于HLO的参数列表和返回值列表中,但它们实际上是常驻于device的,不需要也不应该H2D/D2H。

因此,HLO在编译时还需要通过argument_input_indicesresource_input_indicesresource_update_to_input_index等options来区分arguments和variables。

此外,如果有input是常数,为了避免无谓的H2D开销,可以把它固化到函数内部。同理,对于常数output,它没必要出现在函数中,可以直接定义在XlaCompilationResult的output buffer。

XlaCompilationResult是Graph -> HLO的output,它封装了HLO以及上述部分metadata、buffers。

XlaExecutableClosure

XlaCompileOp会把编译好的executable、metadata、input/output buffers、options等统统封装进一个closure -- XlaExecutableClosure,并将其缓存在XlaExecutableClosureStoreXlaRunOp获取。

XlaRunOp

XlaRunOp可以通过一个数字字符串key(从0开始累加)从cache中查找并执行XlaExecutableClosure,这个key由XlaCompileOp提供。

execution_output = closure.executable()->RunAsync(std::move(*execution_inputs), run_options);

References

END

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,547评论 6 477
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,399评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,428评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,599评论 1 274
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,612评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,577评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,941评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,603评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,852评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,605评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,693评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,375评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,955评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,936评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,172评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 43,970评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,414评论 2 342

推荐阅读更多精彩内容