过去100年,广义相对论和量子力学让我们探索宇宙的尺度从最大一直到最小。人类取得了非常多了不起的成就。但是我们也意识到,量子力学和广义相对论没能达到最深层次的认识。因为它们的适用范围是不同的,在一些情况下还有冲突,比如在讨论黑洞的中心、在大爆炸时刻的宇宙等方面这两套理论存在对立矛盾面。
爱因斯坦的能量方程式告诉我们,能量和物质是可以相互转化,量子力学中,海森堡的不确定性告诉我们,能量和动量在微观世界中疯狂涨落,宇宙在微观尺度上类似一个闹哄哄、混沌、疯狂的世界。但是动量和能量在微观世界中可以相互抵消,因此在宏观世界看来,一切都是宁静和太平的。
简而言之,微观世界的混沌状态和宏观世界的规律性就是这两个理论最大的矛盾点。
广义相对论适用于巨大的天文学尺度。在那样的距离,爱因斯坦的理论说明,没有物质意味着空间是平直的,为了把广义相对论与量子力学融合起来,我们现在必须转移关注的焦点,去考察空间的微观性质。如图所示。
我们说明了如何一点点去暴露越来越小的空间结构。开始的时候,看不出什么来;看图中底下的三层,空间结构几乎是一样的形态。从纯经典的立场看,我们以为这样平直稳定的空间图景会一直保持到任意的距离尺度。但量子力学完全改变了这种想法。万物都摆脱不了不确定性原理所规定的量子涨落——引力场也不例外。虽然经典理论认为虚空间没有引力场,但量子力学证明,引力场尽管在平均意义上等于零,实际上却因量子涨落而波荡起伏。另外,不确定性原理还告诉我们,关注的空间越小,看到的引力场起伏越大。量子力学展现了一个没有绝望的世界,越是狭小的地方,越是浪花飞溅。
引力场通过空间的弯曲表现出来,而量子涨落通过空间周围越来越强烈的扭曲表现自己。物理学家惠勒发明用“量子泡沫”来描述超微的空间和时间里表现出来的混沌状态,在那个尺度上,空间和时间都失去了意义。在这个尺度上,正是量子力学和广义相对论不相容的地方。