Mastering the game of Go without human knowledge笔记

Mastering the game of Go without human knowledge

authors:David Silver, Julian Schrittwieser, Karen Simonyan, ioannis Antonoglou, Aja Huang, Arthur Guez, Thomas Hubert, Lucas baker, Matthew Lai, Adrian bolton, Yutian chen, Timothy Lillicrap, Fan Hui, Laurent Sifre, George van den Driessche, Thore Graepel & Demis Hassabis

Abstract

Here we introduce an algorithm based solely on reinforcement learning, without human data, guidance or domain knowledge beyond game rules.

人工智能的一个长期目标便是算法可以在挑战性领域中学习,纯粹的,并有着超过人类表现的能力。最近,AlphaGo成为了第一个能够打败世界围棋冠军的程序。AlphaGo的树搜索方法分析位置并通过深度搜索树来选择下一步。这些神经网络通过监督学习和人类围棋步骤来学习训练,通过加强学习来自我博弈。这里我们介绍了一种只基于增强学习方法的算法,不需要人类的数据,指导或者除了规则之外的其他专业知识。AlphaGo成为了自己的老师:一个神经网络用于预测AlphaGo自身的步骤选择并成为了AlphaGo对局中的赢家。这种神经网络提升了树搜索的强度,通过高质量的步骤选择和在下一次迭代的强大的自我博弈能力。从最空白的时刻开始,我们的新程序AlphaGo Zero达到了超过人类的性能,和前任已经打败了冠军的AlphaGo相比,是100:0的成绩。

Contribution:

  • Much progress towards artificial intelligence has been made using
    supervised learning systems that are trained to replicate the decisions
    of human experts。
  • By contrast, reinforcement learning systems are trained from their own experience, in principle allowing them to exceed human capabilities, and to operate in domains where human expertise is lacking.
  • Recently, there has been rapid progress towards this
    goal, using deep neural networks trained by reinforcement learning.
graph LR
AlphaGo_Fan-->AlphaGo_Lee
AlphaGo_Lee-->AlphaGo_Zero

Our program, AlphaGo Zero, differs from AlphaGo Fan and AlphaGo Lee in several important aspects:

  • First and foremost, it is trained solely by self-play reinforcement learning, starting from random play, without any supervision or use of human data.
  • Second, it uses only the black and white stones from the board as input features.
  • Third, it uses a single neural network, rather than separate policy and value networks.
  • Finally, it uses a simpler tree search that relies upon this single neural network to evaluate positions and sample moves, without performing any Monte Carlo rollouts.

首先,它只是通过自我强化学习进行训练,是无监督的方法。
第二,输入只是黑白棋。
第三,它只使用single neural network,而不是分别的policy network和value network。
最后,它使用更简单的tree search,依靠这个单一的神经网络来评估位置和样本移动,而不执行任何Monte Carlo rollouts。

Reinforcement learning in AlphaGo Zero

Self-play training pipeline:

QQ图片20171025194536.png
QQ图片20171025194610.png

The main idea of our reinforcement learning algorithm is to use these search operators repeatedly in a policy iteration procedure: the neural network’s parameters are updated to make the move probabilities and value (p, v)=fθ(s) more closely match the improved search probabilities and self-play winner (π, z); these new parameters are used in the next iteration
of self-play to make the search even stronger.

The neural network $(p,v)=f_{\theta_i}(s) $ is adjusted to minimize the error between
the predicted value v and the self-play winner z, and to maximize the
similarity of the neural network move probabilities p to the search
probabilities π.

Loss function $l $ that sums over the mean-squared error and cross-entropy losses, respectively:

QQ图片20171025200644.png

Empirical analysis of AlphaGo Zero training

QQ图片20171025200038.png

Notably, although supervised learning achieved higher move prediction accuracy, the self-learned player performed much better overall, defeating the human-trained player within the first 24h of training. This suggests that AlphaGo Zero may be learning a strategy that is qualitatively different to human play.

QQ图片20171025200421.png
  • Using a residual network was more accurate, achieved lower error and improved performance in AlphaGo by over 600 Elo.
  • Combining policy and value together into a single network slightly reduced the move prediction accuracy, but reduced the value error and boosted playing performance in AlphaGo by around another 600 Elo.

Knowledge learned by AlphaGo Zero

AlphaGo Zero discovered a remarkable level of Go knowledge during its self-play training process. This included not only fundamental elements of human Go knowledge, but also non-standard strategies beyond the scope of traditional Go knowledge.
AlphaGo Zero rapidly progressed from entirely random moves towards a sophisticated understanding of Go concepts.

Final performance of AlphaGo Zero

The learning curve is shown in Fig. 6a.
Figure 6b shows the performance of each program on an Elo scale.

QQ图片20171025202305.png

Conclusion

  • a pure reinforcement learning approach is fully feasible, even in the most challenging of domains
  • a pure reinforcement learning approach requires just a few more hours to train, and achieves much better asymptotic performance, compared to training on human expert data.

METHODS

Reinforcement learning.

Policy iteration

  • A simple approach to policy evaluation is to estimate the value function from the outcomes of sampled trajectories.
  • A simple approach to policy improvement is to select actions greedily with respect to the value function.

Classification-based reinforcement learning

  • Classification-based reinforcement learning improves the policy using a simple ++Monte Carlo search++.

Classification-based modified policy iteration (CBMPI)

  • policy evaluation by regressing a value function towards truncated rollout values.

AlphaGo Zero self-play algorithm

  • as an approximate policy iteration scheme in which MCTS is used for both policy improvement and policy evaluation.

Self-play reinforcement learning in games.

  • NeuroGo
  • RLGO
  • MCTS may also be viewed as a form of self-play reinforcement learning.

AlphaGo versions.

  • AlphaGo Fan
  • AlphaGo Lee
  • AlphaGo Master
  • AlphaGo Zero

Domain knowledge.

  • AlphaGo Zero is provided with perfect knowledge of the game rules.
  • AlphaGo Zero uses Tromp–Taylor scoring66 during MCTS simulations and self-play training.
  • The neural network architecture is matched to the grid-structure of the board.
  • The rules of Go are invariant under rotation and reflection.
  • AlphaGo Zero does not use any form of domain knowledge beyond the points listed above.

Self-play training pipeline.

Main components:

  • Neural network parameters θi are continually optimized from recent self-play data;
  • AlphaGo Zero players αθi are continually evaluated; and the best performing player so far,αθ∗, is used to generate new self-play data.

Optimization.

  • Each neural network $f_{\theta_i}$ is optimized on the Google Cloud using TensorFlow, with 64 GPU workers and 19 CPU parameter servers.
  • Neural network parameters are optimized by stochastic gradient descent with momentum and learning rate annealing.

Evaluator.

The neural network $f_{\theta_i}$ is evaluated by the performance of an MCTS search $\alpha_{\theta_i}$ that uses $f_{\theta_i}$ to evaluate leaf positions and prior probabilities.

Self-play.

The best current player $\alpha_{\theta_*}$, as selected by the evaluator, is used to generate data.

Supervised learning.

  • For comparison, we also trained neural network parameters $\theta_{SL}$ by supervised learning.
  • Parameters were optimized by stochastic gradient descent with momentum and learning rate annealing

Search algorithm.

graph LR
Select -->Expand_and_evaluate
Expand_and_evaluate -->Backup
Backup -->Play

Each node s in the search tree contains edges $(s, a)$ for all legal actions a $s\in A(s)$. Each edge stores a set of statistics,
$ \{N(s,a),W(s,a),Q(s,a),P(s,a)\} $.where $N(s, a)$ is the visit count, $W(s, a)$ is the total action value, $ Q(s, a) $ is the mean action value and $ P(s, a) $ is the prior probability of selecting that edge.

QQ图片20171025211148.png

Neural network architecture.

input features $s_t=[X_t,Y_t,X_{t-1},Y_{t-1},...,X_{t-7},Y_{t-7},C]$.

  • Eight feature planes, $X_t$, consist of binary values indicating the presence of the current player’s stones.
  • A further 8 feature planes, $Y_t$, represent the corresponding features for the opponent’s stones.
  • The final feature plane, $C$, represents the colour to play, and has a constant value of either 1 if black is to play or 0 if white is to play.

刘丽
2017-10-25

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,053评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,527评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,779评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,685评论 1 276
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,699评论 5 366
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,609评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,989评论 3 396
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,654评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,890评论 1 298
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,634评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,716评论 1 330
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,394评论 4 319
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,976评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,950评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,191评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 44,849评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,458评论 2 342

推荐阅读更多精彩内容

  • 一舟载满幸福梦,云淡风轻怀里揣。几翻沉睡几次醒,几次呵护哄孩童。臂弯炼成千斤顶,性情修得观音心。一点轻风拂柳声,游...
    甘朝武阅读 108评论 0 0
  • 01 高中时期的一件事,至今想来仍然历历在目。 那是一个普通的自习课,老师原本要放电影给我们看,后来因为某些原因就...
    薛之谦还没吃我做的饭阅读 280评论 2 3
  • 好想哭 教官卡机麻!!!
    佐伊小Q阅读 165评论 0 0