R绘图应用实例:单因素方差分析ANOVA及绘图

本文主要是利用日常实验数据,尝试用R进行单因素方差分析并绘制柱形图。

ANOVA原理参考:单因素方差分析(One-way Anova)
实验数据:
在随机划分的试验田中,施加三种复合肥(B,C,D),饲料填充物做空白对照(A),一段时间后,测定试验田内植株高度,比较数据有无不同,差异性是否具有统计学意义。
计算结果录入Excel,如下:

图片.png

(一):数据准备

rm(list = ls())
# prepare the data
data <- data.frame(A=c(47,65,44,59,62,37,51),
                   B=c(68,55,49,62,70,59,63),
                   C=c(78,76,72,81,76,71,83),
                   D=c(85,65,81,98,75,92,79))
head(data)

# convert data from a wide format to a long format.
library(reshape2)
data_long <- melt(data, measure.vars= c("A","B","C","D"))
head(data_long)

(二):方差分析(条件适用检验及方差分析)

# 单因素方差分析(One-way Anova)前提假设的检验:
# 1. 正态性检验(对4个水平下的每组数据都做一次正态检验)
shapiro.test(data$A) #或shapiro.test(data_long$value[1:7])
shapiro.test(data$B) #或shapiro.test(data_long$value[8:14])
shapiro.test(data$C) #或shapiro.test(data_long$value[15:21])
shapiro.test(data$D) #或shapiro.test(data_long$value[22:28])
############################################################################
#split:拆分为list数据集;                                                    #
#lapply:对数据集进行shapiro.test检验循环;                                   #
#unlist():向量的原样返回                                                    #
group_data <- split(data_long[,2], data_long[,1])                          #
group_data                                                                 #
unlist(lapply(group_data, function(x){                                     #
  shapiro.test(x)$p.value                                                  #
}))                                                                        #
############################################################################
# 使用Q-Q图来检验正态性
library(car)
qqPlot(group_data[[1]]) #或qqPlot(data$A)
qqPlot(group_data[[2]]) #或qqPlot(data$A)
qqPlot(group_data[[3]]) #或qqPlot(data$A)
qqPlot(group_data[[4]]) #或qqPlot(data$D)

# 2. 方差齐性检验,使用car包的leveneTest()
leveneTest(value~variable, data = data_long)

# 3. 离群点检验:
outlierTest(lm(value~variable, data = data_long))
Q-Q图示例
# 4. 单因素方差分析ANOVA
aov1 <- aov(value~variable, data = data_long)
summary(aov1)
            Df Sum Sq Mean Sq F value   Pr(>F)    
variable     3   4049  1349.7    18.2 2.25e-06 ***
Residuals   24   1780    74.2                     
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

# Show the means
model.tables(aov1, "means")

# Tukey HSD post-hoc test
TukeyHSD(aov1)
  Tukey multiple comparisons of means
    95% family-wise confidence level
Fit: aov(formula = value ~ variable, data = data_long)
$variable
         diff       lwr      upr     p adj
B-A  8.714286 -3.984450 21.41302 0.2574525
C-A 24.571429 11.872693 37.27016 0.0000986
D-A 30.000000 17.301265 42.69874 0.0000055
C-B 15.857143  3.158407 28.55588 0.0106071
D-B 21.285714  8.586979 33.98445 0.0005874
D-C  5.428571 -7.270164 18.12731 0.6453377

# Alternative: Multiple comparisons using multcomp package
library(multcomp)
e <- glht(aov1, linfct = mcp(variable = "Tukey"))
summary(e)
     Simultaneous Tests for General Linear Hypotheses
Multiple Comparisons of Means: Tukey Contrast
Fit: aov(formula = value ~ variable, data = data_long)
Linear Hypotheses:
           Estimate Std. Error t value Pr(>|t|)    
B - A == 0    8.714      4.603   1.893   0.2573    
C - A == 0   24.571      4.603   5.338   <0.001 ***
D - A == 0   30.000      4.603   6.517   <0.001 ***
C - B == 0   15.857      4.603   3.445   0.0106 *  
D - B == 0   21.286      4.603   4.624   <0.001 ***
D - C == 0    5.429      4.603   1.179   0.6453    
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Adjusted p values reported -- single-step method)

(三):统计分析

# summarySE 函数提供了标准差、标准误以及95%的置信区间
library(Rmisc)
data_long_count <- summarySE(data_long, measurevar="value", 
                               groupvars= "variable")
data_long_count

(四):绘图

绘图应用1

# 绘制带有显著性标记的条形图
marker <- c("", "", "***", "***")
library(ggplot2)
ggplot(data_long_count, aes(x=variable, y=value,fill=variable)) + 
  geom_bar(stat="identity", color="black",size=.3) +  
  geom_errorbar(aes(ymin=value-se, ymax=value+se),
                size=.3, width=.2) +
  geom_text(aes(y = value +  1.5 * se, label = marker), 
            size = 5, fontface = "bold") +
  scale_color_brewer("Set1") +
  ggtitle("Effects of Three Compound Fertilizers on Plant Height") +
  xlab("Different compound fertilizer treatments") +
  ylab("Plant height")

Rplot04.png

绘图应用2

# 最终绘图效果
library(ggsignif) 
library(ggplot2)
ggplot(data_long_count, aes(x=variable, y=value,fill=variable)) + 
  geom_bar(stat="identity", color="black",size=.3) + 
  # 添加误差棒
  geom_errorbar(aes(ymin=value-se, ymax=value+se), size=.3, width=.2) +
  # 手动添加显著性
  geom_signif(annotations = c("***","***"), y_position = c(83, 90),
              xmin = c(1, 1), xmax = c(3, 4), 
              tip_length = c(c(0.65, 0.05),c(0.7, 0.05)), vjust = 0 ) +
  # 设置色板
  scale_color_brewer(palette = "Set1") +
  # 更改主标题
  ggtitle("Effects of Three Compound Fertilizers on Plant Height") +
  xlab("Different compound fertilizer treatments") +
  ylab("Plant height")  +
  # 更改轴标签的外观
  theme(plot.title = element_text(color="red", size=14, face="bold.italic"),
        axis.title.x = element_text(color="blue", size=14, face="bold"),
        axis.title.y = element_text(color="#993333", size=14, face="bold")) +
  # 更改图例标签
  labs(fill="Treated")
Rplot05.png

参考资料:

  1. Cookbook for R
  2. 【r<-基础|统计】ANOVA
  3. R语言 简单方差分析
  4. QQ plot图——评价你的统计模型是否合理
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,222评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,455评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,720评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,568评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,696评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,879评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,028评论 3 409
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,773评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,220评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,550评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,697评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,360评论 4 332
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,002评论 3 315
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,782评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,010评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,433评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,587评论 2 350

推荐阅读更多精彩内容