Raft Vs Zab

Zab系列博客

Raft Vs Zab
https://www.jianshu.com/p/24307e7ca9da
Zab系列1 核心概念
https://www.jianshu.com/p/76e5dba31ea4
Zab系列2 角色和存储
https://www.jianshu.com/p/d80f9250ffd1
Zab系列3 选举
https://www.jianshu.com/p/0d2390c242f6
Zab系列4 zookeeper特性
https://www.jianshu.com/p/08b62ca1fe4e
Zab系列5 选举恢复(源码分析)
https://www.jianshu.com/p/b6acd99921b7
Zab系列6 zk单机版工作原理
https://www.jianshu.com/p/ed45982b18b4
Zab系列7 集群工作原理Leader篇
https://www.jianshu.com/p/59240c36ba1b
Zab系列8 集群工作原理Follower篇
https://www.jianshu.com/p/8d7c7f1b2838
Zab系列9 消息顺序性
https://www.jianshu.com/p/0aa96b6a2070

区别

  1. 请求的处理方式不同
  • Zk集群中的client和任意一个Node建立TCP的长连接,完成所有的交互动作,而Raft第一次随机的获取到一个节点,然后找到Leader后,后续直接和leader交互

  • Zk中的读请求,直接由连接的Node处理,不需要和leader汇报,也就是Consul中的stale模式。这种模式可能导致读取到的数据是过时的,但是可以保证一定是半数节点之前确认过的数据

  • 为了避免Follower的数据过时,Zk有sync()方法,可以保证读取到最新的数据。可以调用sync()之后,再查询,确保所有的数据一致后再返回结果

  1. 角色Zk引入了 Observer的角色来提升性能,既可以大幅提升读取的性能,也可以不影响写的速度和选举的速度,同时一定程度上增加了容错的能力。
    https://www.cnblogs.com/EasonJim/p/7488484.html

  2. 日志和状态机
    Zab和Raft都是同时存在 log[](还有快照技术)和状态机(内存树)的存储结构。

  • 日志是以log和快照的形式持久化到磁盘,保存的是数据写的完整过程,为重启加载历史数据提供了便利,避免了服务器宕机造成的数据丢失。
  • 状态机(内存树)把数据加载到内存中,避免了查询操作时磁盘读取,读取的是数据的最终值,从而提升读取的性能

Zab中的日志和Raft中的日志模型很像,都是超过半数节点完成复制之后,该命令才会被commit,而结合半数节点confrim之后的节点才有可能成为新leader,这两点保证了集群的一致性。

选主投票的区别:

  1. Zk集群之间投票消息是单向、网状的,类似于广播,比如A广播A投票给自己,广播出去,然后B接收到A的这个消息之后,会PK A的数据,如果B更适合当leader(数据更新或者myid更大),B会归档A的这个投票,但是不会更新自己的数据,也不会广播任何消息。除非发现A的数据比B当前存储的数据更适合当leader,就更新自己的数据,且广播自己的最新的投票消息。
    而Raft集群之间的所有消息都是双向的,发起一个RPC,会有个回复结果。比如A向B发起投票,B要么反馈投票成功,要么反馈投票不成功。

  2. ZK集群中,一个节点在一个epoch下是可以发起多次投票的,当节点发现有比之前更新的数据更适合的leader时,就会广播自己的最新投票消息,结合recvset这个Set的结构,来更新某个结点最新的投票结果。而Raft的follower在一个term里只能投票一次。

  3. ZK集群中,因为引入了myid的概念,系统倾向让数据最新和myid最大的节点当leader,所以即使有半数节点都投票给同一个Node当leader,这个Node也不一定能成为leader,需要等待200ms,看是不是有更适合的leader产生,当然如果可能因为网络原因 数据最新 myid最大的节点也不一定能当选为leader。但是在Raft系统中,只要某个candidate发现自己投票过半了,就一定能成为leader

  4. ZK集群中,每一轮的选举一定会选出一个leader,因为每个节点允许多次投票,而且会广播自己的最新投票结果。而Raft系统可能涉及选票瓜分,需要重新发起一轮选举才能选出leader,是通过选举超时时间的随机来降低选票瓜分的概率。所以ZK的选举理论上一般需要花费更多的时间,但是只需要一轮。Raft每一轮选举的时间是大致固定的,但是不一定一轮就能选出leader。

  5. ZK集群中,成为公认的leader条件更苛刻,raft模式下,只要新leader发一个命令为空的Log出来,大家就会认同这个节点为leader,但是在ZK集群中,追随leader的2种条件都很苛刻

  • 要么recvset中半数节点的选举following投票给A,才会认可A为自己的leader
  • 要么outofelection中半数节点都认可A为leader,自己才会认可A为自己的leader

事务操作的区别

  1. Raft系统中的事务消息是通过双向的RPC来完成的,而Zab中,则是单向的,一来一回两个消息来完成的。明显Zab的性能更加,不需要浪费leader一个线程去等待follower完成业务操作。
    Zab中leader发送一个Proposal消息给follower,发送完成。当follower完成proposal过程时,再发送一个消息ACK到leader,发送完成。leader统计ACK数量过半时,触发广播commit。

  2. 操作流程当中,Zab的即时性做的更好吧。
    Raft的集群模式下:
    Leader创建日志,广播日志,半数节点复制成功后,自己commit日志,运用到状态机中,反馈客户端,并且在下一个心跳包中,通知小弟们commit

Zab的集群模式下:
leader创建Proposal,广播之后,半数节点复制成功后,广播commit。同时自己也commit,commit完之后再运用到内存树,反馈客户端

参考

https://my.oschina.net/pingpangkuangmo/blog/782702

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,186评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,858评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,620评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,888评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,009评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,149评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,204评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,956评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,385评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,698评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,863评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,544评论 4 335
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,185评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,899评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,141评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,684评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,750评论 2 351

推荐阅读更多精彩内容