PyTorch-18 使用Torchtext进行语言翻译(德语到英语)

要查看图文版教程,请移步到:http://studyai.com/pytorch-1.4/beginner/torchtext_translation_tutorial.html

本教程介绍如何使用 torchtext 提供的几个便利的类来预处理包含英语和德语句子的知名数据集中的数据, 并使用它来训练一个带有注意力机制的序列到序列的模型,将德语句子翻译成英语。

本教程是基于PyTorch社区成员 Ben Trevett 创作的 这个教程

在本教程结束时,你将能够:

使用以下 torchtext 提供的类将句子预处理为NLP建模的常用格式:
        TranslationDataset
        Field
        BucketIterator

Field 和 TranslationDataset

torchtext 有用于创建数据集的实用程序,这些数据集可以很容易地迭代以创建语言翻译模型。 一个关键类是 Field, 它指定每个句子的预处理方式, 另一个是 TranslationDataset ; torchtext 有几个这样的数据集;在本教程中,我们将使用 Multi30k dataset , 它包含大约30000个英语和德语句子(平均长度约13个单词)。

请注意: 本教程的词语切分标记(tokenization)需要 Spacy 。 我们使用Spacy是因为它在英语以外的语言中为词语切分标记提供了强大的支持。 torchtext 提供了一个基本的英语标记器,并支持其他英语标记器 (例如 Moses ), 但对于语言翻译-则需要多种语言-而Spacy是最好的选择。

要运行此教程,首先要使用 pip 或 conda 安装 spacy 。 接着, 下载 English 和 German 原始数据的 Spacy tokenizers:

python -m spacy download en
python -m spacy download de

安装好 Spacy 之后, 下面的代码将基于 Field 中定义的标记器(tokenizer)标记 TranslationDataset 中的每个句子

from torchtext.datasets import Multi30k
from torchtext.data import Field, BucketIterator

SRC = Field(tokenize = "spacy",
            tokenizer_language="de",
            init_token = '<sos>',
            eos_token = '<eos>',
            lower = True)

TRG = Field(tokenize = "spacy",
            tokenizer_language="en",
            init_token = '<sos>',
            eos_token = '<eos>',
            lower = True)

train_data, valid_data, test_data = Multi30k.splits(exts = ('.de', '.en'),
                                                    fields = (SRC, TRG))

现在我们已经定义了 train_data ,我们可以看到 torchtext 的 Field 的一个非常有用的功能: build_vocab 方法现在允许我们创建与每种语言相关联的词汇表(vocabulary)

SRC.build_vocab(train_data, min_freq = 2)
TRG.build_vocab(train_data, min_freq = 2)

一旦运行上面这些代码行后, SRC.vocab.stoi 将是一个字典,其中词汇表中的标记为键,其相应索引为值; SRC.vocab.itos 将是同一个字典,只是其中的键和值被交换了。 在本教程中,我们不会广泛地使用这个事实,但是在您将遇到的其他NLP任务中,这可能会很有用。

BucketIterator

我们将要使用 torchtext 的最后一个特别的功能是 BucketIterator, 因为它接受一个 TranslationDataset 作为其第一个参数,所以非常简单易用。 就像文档中描述的那样: 定义一个迭代器,用于将相似长度的样本组织到同一个batch中。 在为每个新的回合(new epoch)生产新的随机batch时,最小化所需的填充量(padding)。

import torch

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

BATCH_SIZE = 128

train_iterator, valid_iterator, test_iterator = BucketIterator.splits(
    (train_data, valid_data, test_data),
    batch_size = BATCH_SIZE,
    device = device)

这些迭代器(iterators)可以被调用,就像调用 DataLoader 的迭代器一样; 下面, 在 函数 train 和 evaluate 中, 可以简单地使用以下方式来调用:

for i, batch in enumerate(iterator):

每一个 batch 都有 src 和 trg 属性:

src = batch.src
trg = batch.trg

定义 nn.Module 和 Optimizer

从 torchtext 的角度来看:随着数据集的构建和迭代器(iterator)的定义, 本教程的其余部分只是将我们的模型定义为 nn.Module 以及创建一个 Optimizer,然后对其进行训练。

具体来说,我们的模型遵循了 这里 描述的架构(您可以在 这里 找到一个更具注释性的版本)。

注意: 这个模型只是一个可用于语言翻译的示例模型;我们选择它是因为它是该任务的一个标准模型, 而不是因为它是被强烈推荐用于翻译任务的模型。正如您可能知道的,最先进的模型当前基于Transformers; 您可以在 这里 看到PyTorch实现 Transformer layers 的能力; 特别是,下面模型中使用的 “attention” 不同于Transformer模型中的多头自我注意(multi-headed self-attention)。

import random
from typing import Tuple

import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from torch import Tensor


class Encoder(nn.Module):
    def __init__(self,
                 input_dim: int,
                 emb_dim: int,
                 enc_hid_dim: int,
                 dec_hid_dim: int,
                 dropout: float):
        super().__init__()

        self.input_dim = input_dim
        self.emb_dim = emb_dim
        self.enc_hid_dim = enc_hid_dim
        self.dec_hid_dim = dec_hid_dim
        self.dropout = dropout

        self.embedding = nn.Embedding(input_dim, emb_dim)

        self.rnn = nn.GRU(emb_dim, enc_hid_dim, bidirectional = True)

        self.fc = nn.Linear(enc_hid_dim * 2, dec_hid_dim)

        self.dropout = nn.Dropout(dropout)

    def forward(self,
                src: Tensor) -> Tuple[Tensor]:

        embedded = self.dropout(self.embedding(src))

        outputs, hidden = self.rnn(embedded)

        hidden = torch.tanh(self.fc(torch.cat((hidden[-2,:,:], hidden[-1,:,:]), dim = 1)))

        return outputs, hidden


class Attention(nn.Module):
    def __init__(self,
                 enc_hid_dim: int,
                 dec_hid_dim: int,
                 attn_dim: int):
        super().__init__()

        self.enc_hid_dim = enc_hid_dim
        self.dec_hid_dim = dec_hid_dim

        self.attn_in = (enc_hid_dim * 2) + dec_hid_dim

        self.attn = nn.Linear(self.attn_in, attn_dim)

    def forward(self,
                decoder_hidden: Tensor,
                encoder_outputs: Tensor) -> Tensor:

        src_len = encoder_outputs.shape[0]

        repeated_decoder_hidden = decoder_hidden.unsqueeze(1).repeat(1, src_len, 1)

        encoder_outputs = encoder_outputs.permute(1, 0, 2)

        energy = torch.tanh(self.attn(torch.cat((
            repeated_decoder_hidden,
            encoder_outputs),
            dim = 2)))

        attention = torch.sum(energy, dim=2)

        return F.softmax(attention, dim=1)


class Decoder(nn.Module):
    def __init__(self,
                 output_dim: int,
                 emb_dim: int,
                 enc_hid_dim: int,
                 dec_hid_dim: int,
                 dropout: int,
                 attention: nn.Module):
        super().__init__()

        self.emb_dim = emb_dim
        self.enc_hid_dim = enc_hid_dim
        self.dec_hid_dim = dec_hid_dim
        self.output_dim = output_dim
        self.dropout = dropout
        self.attention = attention

        self.embedding = nn.Embedding(output_dim, emb_dim)

        self.rnn = nn.GRU((enc_hid_dim * 2) + emb_dim, dec_hid_dim)

        self.out = nn.Linear(self.attention.attn_in + emb_dim, output_dim)

        self.dropout = nn.Dropout(dropout)


    def _weighted_encoder_rep(self,
                              decoder_hidden: Tensor,
                              encoder_outputs: Tensor) -> Tensor:

        a = self.attention(decoder_hidden, encoder_outputs)

        a = a.unsqueeze(1)

        encoder_outputs = encoder_outputs.permute(1, 0, 2)

        weighted_encoder_rep = torch.bmm(a, encoder_outputs)

        weighted_encoder_rep = weighted_encoder_rep.permute(1, 0, 2)

        return weighted_encoder_rep


    def forward(self,
                input: Tensor,
                decoder_hidden: Tensor,
                encoder_outputs: Tensor) -> Tuple[Tensor]:

        input = input.unsqueeze(0)

        embedded = self.dropout(self.embedding(input))

        weighted_encoder_rep = self._weighted_encoder_rep(decoder_hidden,
                                                          encoder_outputs)

        rnn_input = torch.cat((embedded, weighted_encoder_rep), dim = 2)

        output, decoder_hidden = self.rnn(rnn_input, decoder_hidden.unsqueeze(0))

        embedded = embedded.squeeze(0)
        output = output.squeeze(0)
        weighted_encoder_rep = weighted_encoder_rep.squeeze(0)

        output = self.out(torch.cat((output,
                                     weighted_encoder_rep,
                                     embedded), dim = 1))

        return output, decoder_hidden.squeeze(0)


class Seq2Seq(nn.Module):
    def __init__(self,
                 encoder: nn.Module,
                 decoder: nn.Module,
                 device: torch.device):
        super().__init__()

        self.encoder = encoder
        self.decoder = decoder
        self.device = device

    def forward(self,
                src: Tensor,
                trg: Tensor,
                teacher_forcing_ratio: float = 0.5) -> Tensor:

        batch_size = src.shape[1]
        max_len = trg.shape[0]
        trg_vocab_size = self.decoder.output_dim

        outputs = torch.zeros(max_len, batch_size, trg_vocab_size).to(self.device)

        encoder_outputs, hidden = self.encoder(src)

        # first input to the decoder is the <sos> token
        output = trg[0,:]

        for t in range(1, max_len):
            output, hidden = self.decoder(output, hidden, encoder_outputs)
            outputs[t] = output
            teacher_force = random.random() < teacher_forcing_ratio
            top1 = output.max(1)[1]
            output = (trg[t] if teacher_force else top1)

        return outputs


INPUT_DIM = len(SRC.vocab)
OUTPUT_DIM = len(TRG.vocab)
# ENC_EMB_DIM = 256
# DEC_EMB_DIM = 256
# ENC_HID_DIM = 512
# DEC_HID_DIM = 512
# ATTN_DIM = 64
# ENC_DROPOUT = 0.5
# DEC_DROPOUT = 0.5

ENC_EMB_DIM = 32
DEC_EMB_DIM = 32
ENC_HID_DIM = 64
DEC_HID_DIM = 64
ATTN_DIM = 8
ENC_DROPOUT = 0.5
DEC_DROPOUT = 0.5

enc = Encoder(INPUT_DIM, ENC_EMB_DIM, ENC_HID_DIM, DEC_HID_DIM, ENC_DROPOUT)

attn = Attention(ENC_HID_DIM, DEC_HID_DIM, ATTN_DIM)

dec = Decoder(OUTPUT_DIM, DEC_EMB_DIM, ENC_HID_DIM, DEC_HID_DIM, DEC_DROPOUT, attn)

model = Seq2Seq(enc, dec, device).to(device)


def init_weights(m: nn.Module):
    for name, param in m.named_parameters():
        if 'weight' in name:
            nn.init.normal_(param.data, mean=0, std=0.01)
        else:
            nn.init.constant_(param.data, 0)


model.apply(init_weights)

optimizer = optim.Adam(model.parameters())


def count_parameters(model: nn.Module):
    return sum(p.numel() for p in model.parameters() if p.requires_grad)


print(f'The model has {count_parameters(model):,} trainable parameters')

注意:在对语言翻译模型的性能进行评分时,我们必须告诉 nn.CrossEntropyLoss 函数忽略目标只是填充的索引 (ignore the indices where the target is simply padding.)。

PAD_IDX = TRG.vocab.stoi['<pad>']

criterion = nn.CrossEntropyLoss(ignore_index=PAD_IDX)

最后,我们可以训练和评估这个模型:

import math
import time


def train(model: nn.Module,
          iterator: BucketIterator,
          optimizer: optim.Optimizer,
          criterion: nn.Module,
          clip: float):

    model.train()

    epoch_loss = 0

    for _, batch in enumerate(iterator):

        src = batch.src
        trg = batch.trg

        optimizer.zero_grad()

        output = model(src, trg)

        output = output[1:].view(-1, output.shape[-1])
        trg = trg[1:].view(-1)

        loss = criterion(output, trg)

        loss.backward()

        torch.nn.utils.clip_grad_norm_(model.parameters(), clip)

        optimizer.step()

        epoch_loss += loss.item()

    return epoch_loss / len(iterator)


def evaluate(model: nn.Module,
             iterator: BucketIterator,
             criterion: nn.Module):

    model.eval()

    epoch_loss = 0

    with torch.no_grad():

        for _, batch in enumerate(iterator):

            src = batch.src
            trg = batch.trg

            output = model(src, trg, 0) #turn off teacher forcing

            output = output[1:].view(-1, output.shape[-1])
            trg = trg[1:].view(-1)

            loss = criterion(output, trg)

            epoch_loss += loss.item()

    return epoch_loss / len(iterator)


def epoch_time(start_time: int,
               end_time: int):
    elapsed_time = end_time - start_time
    elapsed_mins = int(elapsed_time / 60)
    elapsed_secs = int(elapsed_time - (elapsed_mins * 60))
    return elapsed_mins, elapsed_secs


N_EPOCHS = 10
CLIP = 1

best_valid_loss = float('inf')

for epoch in range(N_EPOCHS):

    start_time = time.time()

    train_loss = train(model, train_iterator, optimizer, criterion, CLIP)
    valid_loss = evaluate(model, valid_iterator, criterion)

    end_time = time.time()

    epoch_mins, epoch_secs = epoch_time(start_time, end_time)

    print(f'Epoch: {epoch+1:02} | Time: {epoch_mins}m {epoch_secs}s')
    print(f'\tTrain Loss: {train_loss:.3f} | Train PPL: {math.exp(train_loss):7.3f}')
    print(f'\t Val. Loss: {valid_loss:.3f} |  Val. PPL: {math.exp(valid_loss):7.3f}')

test_loss = evaluate(model, test_iterator, criterion)

print(f'| Test Loss: {test_loss:.3f} | Test PPL: {math.exp(test_loss):7.3f} |')

下一步

使用 torchtext 继续学习 Ben Trevett 的教程的剩余部分—- 在这里
请继续关注使用其他 torchtext 功能特性以及 nn.Transformer 的教程,以便学习通过预测下一个单词进行语言建模!
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,657评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,662评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,143评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,732评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,837评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,036评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,126评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,868评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,315评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,641评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,773评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,470评论 4 333
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,126评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,859评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,095评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,584评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,676评论 2 351

推荐阅读更多精彩内容