hisat2+stringtie+deseq2分析RNA-SEQ数据

hisat2+stringtie

for ((i=2064449;i<2064457;i++)); 

do 

hisat2 -p 2 --dta -x ~/RNASEQ/index/grch38_tran/genome_tran -U ~/ribosome/GSE69923/SRR${i}.rmadapt.fq -S SRR${i}.sam;

 samtools sort -@ 2 -o SRR${i}.bam SRR${i}.sam;

 samtools index -@ 2 SRR${i}.bam

stringtie -p 2 -G ~/RNASEQ/index/grch38_tran/Homo_sapiens.GRCh38.84.gtf -o SRR${i}.gtf -A SRR${i}.tab -B -e -l SRR${i} SRR${i}.bam

done


prepDE.py

生成DEseq2能够读取的read count 矩阵

python ~/Software/prepDE.py -i gtflist.txt -g countRes/gene_count.csv -t countRes/transcript.csv

附:gtflist.txt格式:

SRR3469478    ./SRR3469478.gtf

SRR3469479      ./SRR3469479.gtf

SRR4421540      ./SRR4421540.gtf

SRR4421541      ./SRR4421541.gtf


DEseq2差异分析的R代码


args<-commandArgs(TRUE)

library(DESeq2)

library(BiocParallel)

register(MulticoreParam(8))

database=read.csv("transcript_count_matrix.csv",header = T,row.names = 1)

condition <- factor(c(rep("control",args[1]),rep("treat",args[2])))

coldata <- data.frame(row.names = colnames(database), condition)

dds <- DESeqDataSetFromMatrix(countData=database, colData=coldata, design=~condition)

dds <- dds[ rowSums(counts(dds)) > 1, ]

nrow(dds)

dds <- DESeq(dds,parallel = T)

res <- results(dds)

summary(res)

count_r <- counts(dds, normalized=T)

table(res$padj<0.01)

res <- res[order(res$padj),]

resdata <- merge(as.data.frame(res), as.data.frame(counts(dds, normalized=TRUE)),by="row.names",sort=FALSE)

signresdata<-resdata[resdata$padj<0.01,]

write.csv(signresdata,file = "DE_results.csv")

write.csv(count_r,file = "read_counts.csv")

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,686评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,668评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,160评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,736评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,847评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,043评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,129评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,872评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,318评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,645评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,777评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,470评论 4 333
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,126评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,861评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,095评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,589评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,687评论 2 351

推荐阅读更多精彩内容