Lie Algebra

The commutation relation of Lie Algebra 

\left[X_{i}, X_{j}\right]=i f_{i j k} X_{k}

with the specific commutation relations defined by the structure constants, completely determine the entire structure of the group.

One particular representation formed by the structure constant themselves:

\left[T^{a}, T^{b}\right]=i f_{a b c} T^{c} where \left[T^{a}\right]_{b c}=-i f_{a b c}

is called the Adjoint Representation: n number of n*n matrices.

The j representation of S U(2) is (2j+1) dimensional with eigenvalues of J^{3} are

\{j, j-1, j-2, \ldots,-j+2,-j+1,-j\}

Particles with spin j are described by the j representation of SU(2).

For the j representation of SU(2)
, there are three (2j+1)*(2j+1) generators J_{j}^{1}J_{j}^{2}, and J_{j}^{3}(the number of generators is determined by the number of continuous parameters, which is determined by the group itself and has nothing to do with which representation we choose ). By construction J_{j}^{3} is diagonal with eigenvalues 

©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

推荐阅读更多精彩内容