Nyström Method vs Random Fourier Features: A Theoretical and Empirical Comparison

Nyström Method vs Random Fourier Features: A Theoretical and Empirical Comparison

Part of:Advances in Neural Information Processing Systems 25 (NIPS 2012)

[PDF][BibTeX]

Authors

Tianbao Yang

Yu-feng Li

Mehrdad Mahdavi

Rong Jin

Zhi-Hua Zhou

Abstract

Both random Fourier features and the Nyström method have been successfully applied to efficient kernel learning. In this work, we investigate the fundamental difference between these two approaches, and how the difference could affect their generalization performances. Unlike approaches based on random Fourier features where the basis functions (i.e., cosine and sine functions) are sampled from a distribution {\it independent} from the training data, basis functions used by the Nyström method are randomly sampled from the training examples and are therefore {\it data dependent}. By exploring this difference, we show that when there is a large gap in the eigen-spectrum of the kernel matrix, approaches based the Nyström method can yield impressively better generalization error bound than random Fourier features based approach. We empirically verify our theoretical findings on a wide range of large data sets.

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

推荐阅读更多精彩内容

  • 最近阅读了十点读书里的一篇文章,文章名叫通透的活。 文中借用了伊能静的成长经历。她在一场...
    姚瑾读书阅读 3,093评论 6 4
  • 我说过,将来陪你去远方 我在远方,你在家乡 我说过,一定要陪你成长 你在身旁,难在心上 我踏着朝阳 想为你添件像样...
    桐万里阅读 1,287评论 0 1
  • 我总是很容易开始,又很容易的结束,今天看了一本书,突然觉得自己又有了希望,我不知道我这次又会坚持多久,但我希望能比...
    岁月悠然夜月光阅读 1,625评论 0 1